Application of Growth Factors in Tissue Regeneration

조직재생을 위한 효과적인 성장인자의 활용

  • Yun, Ye-Rang (Institute of Tissue Regeneration Engineering (ITREN), Dankook University) ;
  • Kim, Hae-Won (Institute of Tissue Regeneration Engineering (ITREN), Dankook University) ;
  • Jang, Jun-Hyeog (Department of Biochemistry, Inha University School of Medicine)
  • 윤예랑 (단국대학교 조직공학연구소) ;
  • 김해원 (단국대학교 조직공학연구소) ;
  • 장준혁 (인하대학교 의과대학 생화학교실)
  • Received : 2013.07.19
  • Accepted : 2013.08.08
  • Published : 2013.12.01

Abstract

Growth factors (GFs) are soluble-secreted signaling proteins capable of instructing specific cellular responses including cellular growth, proliferation, migration and differentiation. GFs are expected to be effective in tissue regeneration. However, due to the short biological half-life, lack of long-term stability and possible toxicity, GFs show the limitation on practical application. Currently, sophisticated biomaterials systems that control the biological release of growth factors represent a new strategy for tissue regeneration. Here, we introduce the functions of GFs and the combinational applications of GFs and biomaterials.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. Y. R. Yun, J. H. Jang, E. Jeon, W. Kang, S. Lee, J. E. Won, H. W. Kim and I. Wall, Regenerative Medicine, 7, 369-385 (2012). https://doi.org/10.2217/rme.12.1
  2. J. Tan, Y. Wang, X. Yip, F. Glynn, R. K. Shepherd and F. Caruso, Advance Materials, 24, 3362-3366 (2012). https://doi.org/10.1002/adma.201200634
  3. E. Jeon, Y. R. Yun, W. Kang, S. Lee, Y. H. Koh, H. W. Kim, C. K. Suh and J. H. Jang, PLoS One, 7, e43982 (2012). https://doi.org/10.1371/journal.pone.0043982
  4. S. D. Putney and P. A. Burke, Nature Biotechnology, 16, 153-157 (1988).
  5. P. B. Malafaya, G. A. Silva and R. L. Reis, Current Opinion in Solid State & Materials Science, 6, 283-295 (2002). https://doi.org/10.1016/S1359-0286(02)00075-X
  6. P. Ducy and G. Karsenty, Kidney International, 57, 2207-2214 (2000). https://doi.org/10.1046/j.1523-1755.2000.00081.x
  7. C. A. Kirker-Head, Advanced Drug Delivery Reviews, 43, 65-92 (2000). https://doi.org/10.1016/S0169-409X(00)00078-8
  8. B. Nies, E. Dingeldein and H. Wahlig, 2000, Darmstadt, Germany, Inc. US006118043A.
  9. Y. R. Yun, J. E. Won, E. Joen, S. Lee, W. Kang, H. Jo, J. H. Jang, U. S. Shin and H. W. Kim, Journal of Tissue Engineering, 2010, doi: 10.4061/2010/218142.
  10. V. P. Eswarakumar, I. Lax and J. Schlessinger, Cytokine & Growth Factor Reviews, 16, 139-149 (2005). https://doi.org/10.1016/j.cytogfr.2005.01.001
  11. H. Komaki, T. Tanaka, M. Chazono and T. Kikuchi T, Biomaterials, 27, 5118-5126 (2006). https://doi.org/10.1016/j.biomaterials.2006.05.031
  12. S. A. Oh, H. Y. Lee, J. H. Lee, T. H. Kim, J. H. Jang, H. W. Kim and I. Wall, Tissue Engineering Part A, 18, 1087-1100 (2012). https://doi.org/10.1089/ten.tea.2011.0360
  13. M. Ishihara, M. Fujita, K. Obara, H. Hattori, S. Nakamura, M. Nambu, T. Kiyosawa, Y. Kanatani, B. Takase, M. Kikuchi and T. Maehara, Current Drug Delivery, 3, 351-358 (2006). https://doi.org/10.2174/156720106778559047
  14. M. Ohta, Y. Suzuki, H. Chou, N. Ishikawa, S. Suzuki, M. Tanihara, Y. Suzuki, Y. Mizushima, M. Dezawa and C. Ide, Journal of Biomedical Materials Research Part A, 71, 661-668 (2004).
  15. N. Murukesh, C. Dive and G. C. Jayson GC, British Journal of Cancer, 102, 8-18 (2010). https://doi.org/10.1038/sj.bjc.6605483
  16. T. Tammela, B. Enholm, K. Alitalo and K. Paavonen, Cardiovascular Research, 65, 550-563 (2005). https://doi.org/10.1016/j.cardiores.2004.12.002
  17. M. Fiore, G. N. Chaldakov and L. Aloe, Reviews in the Neuroscience, 20, 133-145 (2009).
  18. S. E. Counts and E. J. Mufson, Journal of Neuropathology and Experimental Neurology, 64, 263-272 (2005).
  19. L. W. Chen, L. Y. Horng, C. L. Wu, H. C. Sung and R. T. Wu, Neuropharmacology, 63, 719-732 (2012). https://doi.org/10.1016/j.neuropharm.2012.05.019
  20. D. Konukoglu, G. Andican, S. Firtina, G. Erkol and A. Kurt A, Acta Neurologica Belgica, 112, 255-260 (2012). https://doi.org/10.1007/s13760-012-0101-6
  21. R. C. Harris, E. Chung and R. J. Coffey, Experimental Cell Research, 284, 2-13 (2003). https://doi.org/10.1016/S0014-4827(02)00105-2
  22. R. S. Herbst, International Journal of Radiation Oncology, Biology, Physics, 59, 21-26 (2004). https://doi.org/10.1016/j.ijrobp.2003.10.027
  23. E. Sener, N. Yuksel, D. K. Yildiz, B. Yilmaz, O. Ozdemi, Y. Caglar and E. Degirmenci E, Current Eye Research, 36, 1005-1013 (2011). https://doi.org/10.3109/02713683.2011.601840
  24. M. Felkl, K. Tomas, M. Smid, J. Mattes, R. Windoffer and R. E. Leube, PLoS One, 7, e45280 (2012). https://doi.org/10.1371/journal.pone.0045280
  25. J. K. Choi, J. H. Jang, W. H. Jang, J. Kim, I. H. Bae, J. Bae, Y. H. Park, B. J. Kim, K. M. Lim and J. W. Park, Biomaterials, 33, 8579-8590 (2012). https://doi.org/10.1016/j.biomaterials.2012.07.061
  26. T. Yang, Y. Liang, Q. Lin, J. Liu, F. Luo, X. Li, H. Zhou, S. Zhuang and H. Zhang, Journal of Cellular Biochemistry, 114, 1336-1342 (2013). https://doi.org/10.1002/jcb.24474
  27. F. Martin, L. Apetoh and F. Ghiringhelli, Trends in Molecular Medicine, 18, 742-749 (2012). https://doi.org/10.1016/j.molmed.2012.09.007
  28. J. Wang, Y. Wang, Y. Wang, Y. Ma, Y. Lan and X. Yang, The Journal of Biological Chemistry, 288, 10418-10426 (2013). https://doi.org/10.1074/jbc.M112.444463
  29. 7thspace.com, 2009-01-08, Retrieved 2009-01-21.
  30. R. A. Perez, T. H. Kim, M. Kim, J. H. Jang, M. P. Ginebra and H. W. Kim, Journal of Biomedical Materials Research Part A, 101, 923-931 (2013).
  31. S. E. Kim, S. H. Song, Y. P. Yun, B. J. Choi, I. K. Kwon, M. S. Bae, H. J. Moon and Y. D. Kwon, Biomaterials, 32, 366-373 (2011). https://doi.org/10.1016/j.biomaterials.2010.09.008
  32. J. Hou, J. Wang, L. Cao, X. Qian, W. Xing, J. Lu and C. Liu, Biomedical Materials (Bristol, England), 7, 035002 (2012). https://doi.org/10.1088/1748-6041/7/3/035002
  33. K. Na, S. W. Kim, B. K. Sun, D. G. Woo, H. N. Yang, H. M. Chung and K. H. Park, Biomaterials, 28, 2631-2637 (2007). https://doi.org/10.1016/j.biomaterials.2007.02.008
  34. N. Kimelman-Bleich, G. Pelled, D. Sheyn, I. Kallai, Y. Zilberman, O. Mizrahi, Y. Tal, W. Tawackoli, Z. Gazit and D. Gazit, Biomaterials, 30, 4639-4648 (2009). https://doi.org/10.1016/j.biomaterials.2009.05.027
  35. S. D. Cook, L. P. Patron, S. L. Salkeld and D. C. Rueger, The Journal of Bone and Joint Surgery American volume, 85-A Suppl 3, 116-123 (2003).
  36. J. H. Kim, T. H. Kim, G. Z. Jin, J. H. Park, Y. R. Yun, J. H. Jang and H. W. Kim. Journal of Biomedical Materials Research Part A, 101, 1447-1455 (2013).
  37. L. Geng, A. Chaudhuri, G. Talmon, J. L. Wisecarver and J. Wang, PLoS One, 8, e59918 (2013). https://doi.org/10.1371/journal.pone.0059918
  38. J. A. Shepard, F. R. Virani, A. G. Goodman, T. D. Gossett, S. Shin and L. D. Shea, Biomaterials, 33, 7412-7421 (2012). https://doi.org/10.1016/j.biomaterials.2012.06.081
  39. L. Megan, J. Jessica, H. Warren and B. Joel, Journal of Biomedical Materials Research Part A, 2013, doi: 10.1002/jbm.a.34745.
  40. X. Xu, W. C. Yee, P. Y. Hwang, H. Yu, A. C. Wan, S. Gao, K. L. Boon, H. Q. Mao, K. W. Leong and S. Wang, Biomaterials, 24, 2405-2412 (2003). https://doi.org/10.1016/S0142-9612(03)00109-1
  41. A. Washio, C. Kitamura, E. Jimi, M. Terashita and T. Nishihara, Experimental Cell Research, 315, 3036-3043 (2009). https://doi.org/10.1016/j.yexcr.2009.07.006
  42. K. Ulubayram, A. Nur Cakar, P. Korkusuz, C. Ertan and N. Hasirci, Biomaterials, 22, 1345-1356 (2001). https://doi.org/10.1016/S0142-9612(00)00287-8
  43. S. R. Hong, S. J. Lee, J. W. Shim, Y. S. Choi, Y. M. Lee, K. W. Song, M. H. Park, Y. S. Nam and S. I. Lee, Biomaterials, 22, 2777-2783 (2001). https://doi.org/10.1016/S0142-9612(01)00021-7