Performance of Microbial Fuel Cell Integrated with Anaerobic Membrane Filter for Continuous Sewage Treatment with Stable Effluent Quality

안정적 유출수질의 연속 하수처리를 위한 혐기성 멤브레인 필터와 통합된 미생물연료전지의 성능 평가

  • Lee, Yunhee (Department of Railroad, Construction System, Woosong University) ;
  • Oa, Seong-Wook (Department of Railroad, Construction System, Woosong University)
  • 이윤희 (우송대학교 철도건설시스템학과) ;
  • 어성욱 (우송대학교 철도건설시스템학과)
  • Received : 2013.09.06
  • Accepted : 2013.11.12
  • Published : 2013.11.30

Abstract

A new type of microbial fuel cell (MFC) with anaerobic membrane filter was designed to produce bioelectricity and to treat domestic sewage at relatively high organic loading rate (OLR) of $6.25kgCOD/m^3/day$ and short hydraulic retention time (HRT) of 1.9 h. A following aeration system was applied to ensure effluent water quality in continuous operation. Glucose was supplemented to increase the influent concentration of domestic sewage. Influent substrate of 95% was removed via the MFC and following aeration system and the corresponding maximum power density was $25.6mW/m^3$. External resistor of $200{\Omega}$ and air-cathode system contributed better MFC performance comparing to $2000{\Omega}$ and dissolved oxygen as a catholyte.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. Cheng, S., Liu, H., and Logan, B. E. (2006). Increased Performance of Single-Chamber Microbial Fuel Cells using an Improved Cathode Structure, Electrochemistry Communications, 8, pp. 489-494. https://doi.org/10.1016/j.elecom.2006.01.010
  2. Davila, D., Esquivel, J. P., Vigues, N., Sanchez, O., Garrido, L., Tomas, N., Sabate, N., Campo, F. J., Munoz, F. J., and Mas, J. (2008). Development and Optimization of Microbial Fuel Cell, Journal of New Materials for Electrochemistry Systems, 11, pp. 99-103.
  3. Jang, J. K., Pham, T. H., Chang, I. S., Kang, K. H., Moon, H., Cho, K. S., and Kim, B. H. (2004). Construction and Operation of a Novel Mediator-and Membrane-less Microbial Fuel Cell, Process Biochemistry, 39, pp. 1007-1012. https://doi.org/10.1016/S0032-9592(03)00203-6
  4. Kim, J. R., Premier, G. C., Hawkes, F. R., Rodriguez, J., Dinsdale, R. M., and Guwy, A. J. (2010). Modular Tubular Microbial Fuel Cells for Energy Recovery during Sucrose Wastewater Treatment at Low Organic Loading Rate, Bioresource Technology, 101, pp. 1190-1198. https://doi.org/10.1016/j.biortech.2009.09.023
  5. Lee, M. E., Jo, S. Y., Chung, J. W., Song, Y. C., Woo, J. H., Yoo, K. S., and Lee, C. Y. (2011). Effect of External Resistance on Electrical Properties of Two-Chamber Type Microbial Fuel Cells, Journal of Korean Society of Environmental Engineers, 33(3), pp. 167-173. https://doi.org/10.4491/KSEE.2011.33.3.167
  6. Lefebvre, O., Al-Mamun, A., Ooi, W. K., Tang, Z., Chua, D. H. C., and Ng, H. Y. (2008). An Insight into Cathode Options for Microbial Fuel Cells, Water Science and Technology, 57(12), pp. 2031-2037. https://doi.org/10.2166/wst.2008.611
  7. Lew, B., Tarre, S., Beliavski, M., Dosoretz, C., and Green, M. (2009). Anaerobic Membrane Bioreactor (AnMBR) for Domestic Wastewater Treatment, Desalination, 243, pp. 251-257. https://doi.org/10.1016/j.desal.2008.04.027
  8. Liu, H. and Logan, B. E. (2004). Electricity Generation using an Air-cathode Single Chamber Microbial Fuel Cell in the Presence and Absence of a Proton Exchange Membrane, Environmental Science & Technology, 38, pp. 4040-4046. https://doi.org/10.1021/es0499344
  9. Logan, B. E. (2008). Microbial Fuel Cell, John Wiley & Sons, Inc. pp. 64-74.
  10. Logan, B. E., Hamelers, B., Rozendal, R., Schroder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W., and Rabaey, K. (2006). Critical Review- Microbial Fuel Cells: Methodology and Technology, Environmental Science & Technology, 40(17), pp. 5181-5192. https://doi.org/10.1021/es0605016
  11. Moon, H., Chang, I. S., Jang, J. K., and Kim, B. H. (2005). Residence Time Distribution in Microbial Fuel Cell and Its Influence on COD Removal with Electricity Generation, Biochemical Engineering Journal, 27, pp. 59-65. https://doi.org/10.1016/j.bej.2005.02.010
  12. Nam, J. Y., Kim, H. W., Lim, K. H., and Shin, H. S. (2010). Effects of Organic Loading Rates on the Continuous Electricity Generation from Fermented Wastewater using a Single-chamber Microbial Fuel Cell, Bioresource Technology, 101, pp. 533-537.
  13. Oswald, W. J. (2003). My Sixty Years in Applied Algology, Journal of Applied Phycology, 15, pp. 99-106. https://doi.org/10.1023/A:1023871903434
  14. Rabaey, K., Lissens, G., Siciliano, S. D., and Verstraete, W. (2003). A Microbial Fuel Cell Capable of Converting Glucose to Electricity at High Rate and Efficiency, Biotechnology Letters, 25(18), pp. 1531-1535. https://doi.org/10.1023/A:1025484009367
  15. Rabaey K. and Verstraete, W. (2005). Microbial Fuel Cells: Novel Biotechnology for Energy Generation, Trends in biotechnology, 23(6), pp. 291-298. https://doi.org/10.1016/j.tibtech.2005.04.008
  16. Sans, C. and Mata-Alvarez, J. (1993). Volatile Fatty Acids Production by Anaerobic Fermentation of Urban Organic Wastes, Preprints of Papers-American Chemical Society Division Fuel Chemistry, 38, pp. 886-886.
  17. Sung, S., Raskin, L., Duangmanee, T., Padmasin, S., and Simmons, J. J. (2002). Hydrogen Production by Anaerobic Microbial Communities Exposed to Repeated Heat Treatments, Proceedings of the 2002 U.S. DOE Hydrogen Program Review, NREL/CP-610-32405.
  18. Winfield, J., leropoulos, L., Greenman, J., and Dennis, J. (2011). The Overshoot Phenomenon as a Function of Internal Resistance in Microbial Fuel Cells, Bioelectrochemistry, 81(1), pp. 22-27. https://doi.org/10.1016/j.bioelechem.2011.01.001
  19. Zhao, F., Harnisch, F., Schröder, U., Scholz, F., Bogdanoff, P., and Herrmann, I. (2006). Challenges and Constraints of using Oxygen Cathodes in Microbial Fuel Cells, Environmental Science & Technology, 40(17), pp. 5193-5199. https://doi.org/10.1021/es060332p