Experimental Study on Effect on Prey Survival by Juvenile Fish Shelter (JFS) under Pressure by Piscivorous Fishes

포식압력 하에 치어 보호 구조물이 피식자의 생존율에 미치는 영향에 관한 실험적 연구

  • Ahn, Chang Hyuk (Environmental Engineering Research Division, Korea Institute of Construction Technology) ;
  • Joo, Jin Chul (Environmental Engineering Research Division, Korea Institute of Construction Technology) ;
  • Lee, Saeromi (Environmental Engineering Research Division, Korea Institute of Construction Technology) ;
  • Ahn, Hosang (Environmental Engineering Research Division, Korea Institute of Construction Technology) ;
  • Park, Jae-Roh (Environmental Engineering Research Division, Korea Institute of Construction Technology) ;
  • Song, Ho Myeon (Environmental Engineering Research Division, Korea Institute of Construction Technology)
  • 안창혁 (한국건설기술연구원 환경연구실) ;
  • 주진철 (한국건설기술연구원 환경연구실) ;
  • 이새로미 (한국건설기술연구원 환경연구실) ;
  • 안호상 (한국건설기술연구원 환경연구실) ;
  • 박재로 (한국건설기술연구원 환경연구실) ;
  • 송호면 (한국건설기술연구원 환경연구실)
  • Received : 2013.08.29
  • Accepted : 2013.10.28
  • Published : 2013.11.30

Abstract

The aim of this study was to evaluate artificial fish shelter, which was known to increase prey survival and expand habitat space to improve species diversity and fish communities in a freshwater ecosystem. The experiment was performed at an outdoor test-bed for three months from 2011 by comparing the responses to adjustments in the volume of the artificial patch (juvenile fish shelter, JFS) in the control and experimental groups. Analysis of the environmental conditions over two periods (Period1 ~ 2) showed minor differences in the physichemical characteristics of water quality, phytoplankton, and zooplankton biomass, thus, allowing comparative analysis of feeding ecology. However, high water temperature conditions in Period1 ($25.6{\pm}2.0^{\circ}C$), affected the predation activity of the piscivorous fishes, Coreoperca herzi (C. herzi, size $89{\pm}4mm$). Survival rates of the prey fishes, Rhynchocypris oxycephalus (R. oxycephalus, size $29{\pm}1mm$), improved as the patch volume increased and were higher than those of the control group by 35.9 ~ 46.7%. Analysis showed that JFS reduced the chances of predator-prey encounter, and thereby minimized prey vulnerability.

Keywords

References

  1. Allan, D. J. (2004). Landscapes and Riverscapes: The Influence of Land Use on Stream Ecosystems, Annual Review of Ecology, Evolution, and Systematics, 35, pp. 257-284. https://doi.org/10.1146/annurev.ecolsys.35.120202.110122
  2. Almany, G. R. (2004). Differential Effects of Habitat Complexity, Predators and Competitors on Abundance of Juvenile and Adult Coral Reef Fishes, Oecologia, 141, pp. 105-113.
  3. American Public Health Association (APHA). (2005). Standard Methods for the Examination of Water and Wastewater (21th edition), American Public Health Association, Washington, D.C., USA, pp. 9-72.
  4. Bailey, K. M. and Duffy-Anderson, J. T. (1990). Fish Predation And Mortality, Encyclopedia of Ocean Sciences, pp. 961-968.
  5. Bernhardt, E. S. and Palmer, M. A. (2007). Restoring Streams in an Urbanizing World, Freshwater Biology, 52, pp. 738-751. https://doi.org/10.1111/j.1365-2427.2006.01718.x
  6. Blaxter, H. S. (1986). Development of Sense Organs and Behaviour of Teleost Larvae with Special Reference to Feeding and Predator Avoidance, Transactions of the American Fisheries Society, 115, pp. 98-114. https://doi.org/10.1577/1548-8659(1986)115<98:NLFCDO>2.0.CO;2
  7. Briones-Fourzan, P. and Lozano-Alvarez, E. (2001). Effects of Artificial Shelters (Casitas) on the Abundance and Biomass of Juvenile Spiny Lobsters Panulirus argus in a Habitat- Limited Tropical Reef Lagoon, Marine Ecology Progress Series, 221, pp. 221-232. https://doi.org/10.3354/meps221221
  8. Damsgard, B. and Dill, L. (1998). Risk-Taking Behavior in Weight-Compensating Coho Salmon, Oncorhynchus kisutch, Behavioral, Ecology, 9, pp. 26-32. https://doi.org/10.1093/beheco/9.1.26
  9. D'Anna, G., Giacalone, V. M., Fernadez, T. V., Vaccaro, A. M., Pipitone, C., Mirto, S., Mazzola, S., and Badalamenti, F. (2012). Effects of Predator and Shelter Conditioning on Hatchery-Reared White Seabream Diplodus sargus (L., 1758) Released at Sea, Aquaculture, 356, pp. 91-97.
  10. Eby, L. A., Rudstam, L. G., and Kitchell, J. F. (1995). Predator Responses to Prey Population Dynamics: An Empirical Analysis Based on Lake Trout Growth Rates, Canadian Journal of Fisheries and Aquatic Sciences, 52, pp. 1564-1571. https://doi.org/10.1139/f95-149
  11. Finstad, A. G., Einum, S., Forseth, T., and Ugedal, O. (2007). Shelter Availability Affects Behaviour, Size-Dependent and Mean Growth of Juvenile Atlantic salmon, Freshwater Biology, 52, pp. 1710-1718. https://doi.org/10.1111/j.1365-2427.2007.01799.x
  12. Fischer, P. (2000). An Experimental Test of Metabolic and Behavioural Responses of Benthic Fish Species to Different Types of Substrate, Canadian journal of Fisheries and Aquatic Sciences, 57, pp. 2336-2344. https://doi.org/10.1139/f00-211
  13. Fraser, D. F. and Cerri, R. D. (1982). Experimental Evaluation of Predator-Prey Relationships in a Patchy Environment: Consequences for Habitat Use Patterns in Minnows, Ecology, 63, pp. 307-313.
  14. Fuiman, L. A. (1989). Vulnerability of Herring Larvae to Predation by Yearling Herring, Marine Ecology Progress Series, 51, pp. 291-299. https://doi.org/10.3354/meps051291
  15. Fuiman, L. A. and Magurran, A. E. (1994). Development of Predator Defences in Fishes, Review in Fish Biology and Fisheries, 4, pp. 145-183. https://doi.org/10.1007/BF00044127
  16. Gotceitas, V. and Brown, J. A. (1993). Substrate Selection by Juvenile Atlantic Cod (Gadus morhua): Effects of Predation Risk, Oecologia, 93, pp. 31-37.
  17. Graqvist, M. and Mattila, J. (2004). The Effects of Turbidity and Light Intensity on the Consumption of Mysids by Juvenile Perch (Perca fluviatilis L.), Hydrobiologia, 514, pp. 93-101. https://doi.org/10.1023/B:hydr.0000018210.66762.3b
  18. Gye, M. C. (2002). Spermatogenesis of Coreoperca herzi (Perciformes; Percichthyidae), Korean Journal of Limnology, 35(3), pp. 232-236. [Korean Literature].
  19. Hershey, A. E. (1985). Effects of Predatory Sculpin on the Chironomid Communities in an Arctic Lake, Ecology, 66, pp. 1131-1138. https://doi.org/10.2307/1939165
  20. Jang, S. H., Ryu, H. S., and Lee, J. H. (2003). A Study on the Stock Assessment and Management Implications of the Korean Aucha perch (Coreoperca herzi) in Freshwater: (1) Estimation of Population Ecological Characteristics of Coreoperca herzi in the Mid-Upper System of the Seomjin River, Korean Journal of Limnology, 43(1), pp. 82-90. [Korean Literature].
  21. Jeppesen, E., Jensen, J. P., Amsinck, S., Landkildehus, F., Lauridsen, T., and Mitchell, S. F. (2002). Reconstructing the Historical Changes in Daphnia Mean Size and Planktivorous Fish Abundance in Lakes from the Size of Daphnia ephippia in the Sediment, Journal of Paleolimnology, 27, pp. 133-143. https://doi.org/10.1023/A:1013561208488
  22. Kieffer, J. D. and Colgan, P. W. (1992). Differences in Learning by Foraging Juvenile Pumpkinseed and Bluegill Sunfish in a Structured Habitat, Environmental Biology of Fishes, 33, pp. 359-366. https://doi.org/10.1007/BF00010948
  23. Kim, H. C., Kim, M. S., and Yu, H. S. (1994). Biological Control of Vector Mosquitoes by the Use of Fish Predators, Moroco oxycephalus and Misgurnus anguillicaudatus in the Laboratory and Semi-Field Rice Paddy, Korean Journal of Applied Entomology, 24(4), pp. 269-284. [Korean Literature].
  24. Laure1, B. J., Gregory, R. S., and Brown, J. A. (2003). Predator Distribution and Habitat Patch Area Determine Predation Rates on Age-0 Juvenile Cod Gadus spp., Marine Ecology Progress Series, 251, pp. 245-254. https://doi.org/10.3354/meps251245
  25. Layman, C. A., Carmen, G. M., and Jacob, E. A. (2010). Linking Fish Colonization Rates and Water Level Change in Littoral Habitats of a Venezuelan Floodplain River, Aquatic Ecology, 44, pp. 269-273. https://doi.org/10.1007/s10452-009-9256-5
  26. Lazzaro, X. (1987). A Review of Planktivorous Fishes: Their Evolution, Feeding Behaviours, Selectivities, and Impacts, Hydrobiologia, 146, pp. 97-167. https://doi.org/10.1007/BF00008764
  27. Leitao, F., Santis, M. N., Erzini, K., and Monteiro, C. C. (2008). The Effect of Predation on Artificial Reef Juvenile Demersal Fish Species, Marine Biology, 153, pp. 1233-1244. https://doi.org/10.1007/s00227-007-0898-3
  28. Lundvall, D., Svanbak, R., Persson, L., and Bystrom, P. (1998). Size-Dependent Predation in Piscivores: Interactions between Predator Foraging and Prey Avoidance Abilities, Canadian Journal of Fisheries and Aquatic Sciences, 56, pp. 1285- 1292.
  29. Main, K. L. (1987). Predator Avoidance in Seagrass Meadows: Prey Behavior, Microhabitat Selection, and Cryptic Coloration, Ecology, 68, pp. 170-180. https://doi.org/10.2307/1938817
  30. Matsuzaki, S. S., Sakamoto, M., Kawabe, K., and Takamura, N. (2012). A Laboratory Study of the Effects of Shelter Availability and Invasive Crayfish on the Growth of Native Stream Fish, Freshwater Biology, 57, 874-882. https://doi.org/10.1111/j.1365-2427.2012.02743.x
  31. McKinney, M. L. (2006). Urbanization as a Major Cause of Biotic Homogenization, Biological Conservation, 127, pp. 247-260. https://doi.org/10.1016/j.biocon.2005.09.005
  32. Michael J. H. Hickford, M. C., and David R. S. (2010). Predation, Vegetation and Habitat-Specific Survival of Terrestrial Eggs of a Diadromous Fish, Galaxias maculatus (Jenyns, 1842), Journal of Experimental Marine Biology and Ecology, 385, pp. 66-72. https://doi.org/10.1016/j.jembe.2010.01.010
  33. Millidine, K. J., Armstrong, J. D., and Metcalfe, N. B. (2006). Presence of Shelter Reduces Maintenance Metabolism of Juvenile Salmon, Functional Ecology, 20, pp. 839-845. https://doi.org/10.1111/j.1365-2435.2006.01166.x
  34. Mintz, J. D., Lipcius, R. N., Eggleston, D. B., and Seebo, M. S. (1994). Survival of Juvenile Caribbean Spiny Lobster: Effects of Shelter Size, Geographic Location and Conspecific Abundance, Marine Ecology Progress Series, 112, pp. 255-266. https://doi.org/10.3354/meps112255
  35. Mittelbach, G. G. (1986). Predator-Mediated Habitat Use: Some Consequences for Species Interactions, Environmental Biology of Fishes, 16, pp. 159-169. https://doi.org/10.1007/BF00005168
  36. Moriniére, E. C., Nagelkerken, I., Meij, H., and Velde, G. (2004). What Attracts Juvenile Coral Reef Fish to Mangroves: Habitat Complexity or Shade?, Marine Biology, 144, pp. 139-145. https://doi.org/10.1007/s00227-003-1167-8
  37. Olson, M. H. (1996). Ontogenetic Shifts in Largemouth Bass: Variability and Consequences for First-Year Growth, Ecology, 77, pp. 179-90. https://doi.org/10.2307/2265667
  38. Resetarits, W. J. (1991). Ecological Interactions among Predators in Experimental Stream Communities, Ecology, 72, pp. 1782-1793. https://doi.org/10.2307/1940977
  39. Savino, J. F. and Stein, R. A. (1989). Behavioural Interactions between Fish Predators and Their Prey: Effects of Plant Density, Animal Behaviour, 37, pp. 311-321. https://doi.org/10.1016/0003-3472(89)90120-6
  40. Savino, J. F. and Stein, R. A. (1982). Predator-Prey Interaction between Largemouth Bass and Bluegills as Influenced by Simulated, Submerged Vegetation, Transactions of the American Fisheries Society, 111, pp. 255-266. https://doi.org/10.1577/1548-8659(1982)111<255:PIBLBA>2.0.CO;2
  41. Sogard, S. M. (1997). Size-Selective Mortality in the Juvenile Stage of Teleost Fishes: A Review, Bulletin of Marine Science, 60(3), pp. 1129-1157.
  42. Steele, M. A. (1999). Effect of Shelter and Predators on Reef Fishes, Journal of Experimental Marine Biology and Ecology, 233, pp. 65-79. https://doi.org/10.1016/S0022-0981(98)00127-0
  43. Stefan, H. G., Fang, X., and Eaton, J. G. (2001). Simulated Fish Habitat Changes in North American Lakes in Response to Projected Climate Warming, Transactions of the American Fisheries Society, 130(3), pp. 459-477. https://doi.org/10.1577/1548-8659(2001)130<0459:SFHCIN>2.0.CO;2
  44. Suttle, K. B., Pover, M. E., Levine, J. M., and McNeely, C. (2004). How Fine Sediment in Riverbed Impairs Growth and Survival of Juvenile Salmonids, Ecological Applications, 14, pp. 969-974. https://doi.org/10.1890/03-5190
  45. Tonn, W. M., Paszkowski, C. A., and Holopainen, I. J. (1992). Piscivory and Recruitment: Mechanisms Structuring Prey Populations in Small Lakes, Ecology, 73, pp. 951-958. https://doi.org/10.2307/1940171
  46. Torres, M. A., Ramos, F., and Sobrino. I. (2012). Length-Weight Relationships of 76 Fish Species from the Gulf of Cadiz (SW Spain), Fisheries Research, 1217(128), pp. 171-175.
  47. Van Wassenbergh, S. and De Rechter, D. (2011). Piscivorous Cyprinid Fish Modulates Suction Feeding Kinematics to Capture Elusive Prey, Zoology, 114, pp. 46-52. https://doi.org/10.1016/j.zool.2010.10.001
  48. Wright, R. A., Crowder, L. B., and Martin, T. H. (1993). The Effects of Predation on the Survival and Size-Distribution of Estuarine Fishes: and Experimental Approach, Environmental Biology of Fishes, 36, pp. 291-300. https://doi.org/10.1007/BF00001725
  49. Yu, D., Chen, M., Zhou, Z. Eric, R., Tang, Q., and Liu, H. (2013). Global Climate Change will Severly Decrease Potential Distribution of the East Asian Coldwater Fish Rhynchocypris oxycephalus (Actinopterygii, Cyprinidae), Hydrobiologia, 700, pp. 23-32. https://doi.org/10.1007/s10750-012-1213-y
  50. Zaret, T. M. (1980). Predation and Freshwater Communities. Yale University Press, New Haven and London. pp. 1-187.