DOI QR코드

DOI QR Code

불연속 탄소섬유-에폭시 복합재의 발열성능 평가

Experimental and Numerical Study of Heating Characteristics of Discontinuous Carbon Fiber-Epoxy Composites

  • 김명수 (울산과학기술대학교 기계 및 신소재공학부) ;
  • 공경일 (울산과학기술대학교 기계 및 신소재공학부) ;
  • 김나리 (울산과학기술대학교 기계 및 신소재공학부) ;
  • 박형욱 (울산과학기술대학교 기계 및 신소재공학부) ;
  • 박운영 (울산과학기술대학교 기계 및 신소재공학부) ;
  • 박영빈 (울산과학기술대학교 기계 및 신소재공학부) ;
  • 정무영 (울산과학기술대학교 테크노경영학부) ;
  • 이상환 ((주)경보포리머) ;
  • 김수기 ((주)경보포리머)
  • 투고 : 2013.01.30
  • 심사 : 2013.02.25
  • 발행 : 2013.02.28

초록

불연속 탄소섬유-에폭시 복합재의 저항발열 특성에 관한 연구를 수행하였다. 1, 3, 5 wt.% 불연속 탄소섬유가 함유된 복합재 시험편을 초음파 처리와 캐스트 몰딩(cast molding)을 이용하여 제조하였다. 시편에 DC 전류 인가시 발생되는 저항열에 의한 시편의 표면온도 변화를 적외선 카메라를 이용하여 측정하였다. 발열온도를 예측하기 위해서 유한요소해석을 수행하였는데, 실측된 온도와 부합함을 확인하였다. 탄소섬유의 함량과 인가전압이 증가할수록 발열저항에 의해서 발생된 열은 증가함을 확인하였다. 복합재 내에서 균일한 온도분포를 얻기 위해서는 탄소섬유의 분산상태가 중요하며, 대기온과 습도 등 실험환경이 발열온도에 영향을 미치는 것으로 나타났다.

This study explores the resistive heating characteristics of discontinuous carbon fiber (CF)-epoxy composites. Test samples including 1, 3, and 5 wt.% CF were fabricated using sonication and cast molding processes. For heating performance characterization, DC currents were applied to the composite samples, and surface temperatures were evaluated visually and quantitatively using an infrared camera. To estimate the thermal performance of composites and verify the experimental results, finite element analyses were performed. The resistive heating mechanism was investigated in connection with CF loading and applied voltages. Resistive heating efficiency increased proportionately with CF concentration and applied voltage. To obtain homogeneous temperature distribution of the samples, high degree of CF dispersion is required.

키워드

참고문헌

  1. Joseph, C., Viney, C., "Electrical resistance curing of carbon-fibre/epoxy composites," Composites Science and Technology, Vol. 60, No. 2, 2000, pp. 315-319. https://doi.org/10.1016/S0266-3538(99)00112-8
  2. Zhang, J., Guo, Q., Huson, M., Slota, I., Fox, B., "Interphase study of thermoplastic modified epoxy matrix composites: Phase behaviour around a single fibre influenced by heating rate and surface treatment," Composites Part A: Applied Science and Manufacturing, Vol. 41, No. 6, 2010, pp. 787-794. https://doi.org/10.1016/j.compositesa.2010.02.016
  3. Zantout, A. E., Zhupanska, O.I., "On the electrical resistance of carbon fiber polymer matrix composites," Composites Part A: Applied Science and Manufacturing, Vol. 41, No. 11, 2010, pp. 1719-1727. https://doi.org/10.1016/j.compositesa.2010.08.010
  4. Fosbury A., Wang S., Pin Y.F., Chung D.D.L. "The interlaminar interface of a carbon fiber polymer-matrix composite as a resistance heating element," Composites Part A: Applied Science and Manufacturing, Vol. 34, No. 10, 2003, pp. 933-940. https://doi.org/10.1016/S1359-835X(03)00208-2
  5. Wang S., Chung, D.D.L., "Temperature/light sensing using carbon fiber polymer-matrix composite," Composites Part B: Engineering, Vol. 30, No. 6, 1999, pp. 591-601. https://doi.org/10.1016/S1359-8368(99)00020-7
  6. Athanasopoulos, N., Kostopoulos, V., "Resistive heating of multidirectional and unidirectional dry carbon fibre performs," Composites Science and Technology, Vol. 72, No. 11, 2012, pp. 1273-1282. https://doi.org/10.1016/j.compscitech.2012.04.018
  7. Takahashi, K., Hahn, H.T., "Autonomic thermal management of graphite fiber/epoxy composite structures using an addressable conducting network," Composites Part B: Engineering, Vol. 43, No. 3, 2012, pp. 833-840.
  8. Ogasawara, T., Hirano, Y., Yoshimura, A., "Coupled thermalelectrical analysis for carbon fiber/epoxy composites exposed to simulated lightning current," Composites Part A: Applied Science and Manufacturing, Vol. 41, No. 8, 2010, pp. 973-981. https://doi.org/10.1016/j.compositesa.2010.04.001
  9. Rudolf, R., Mitschang, P., Neitzel, M., "Induction heating of continuous carbon-fibre-reinforced thermoplastics," Composites Part A: Applied Science and Manufacturing, Vol. 31, No. 11, 2000, pp. 1191-202. https://doi.org/10.1016/S1359-835X(00)00094-4
  10. Fink, B.K., McCulloug R.L., Gillespie, J.W., "A local theory of heating in cross-ply carbon fiber thermoplastic composites by magnetic induction," Polymer Engineering and Science, Vol. 32, No. 5, 1992, pp. 357-369.
  11. Fink, B.K., McCullough, R.L., Gillespie, J.W., "A model to predict the through-thickness distribution of heat generation in cross-ply carbon-fiber composites subjected to alternating magnetic fields," Composites Science and Technology, Vol. 55, No. 2, 1995, pp. 119-130. https://doi.org/10.1016/0266-3538(95)80024-7
  12. Tian, T., Cole, K.D., "Anisotropic thermal conductivity measurement of carbon-fiber/epoxy composite materials," International Journal of Heat and Mass Transfer, Vol. 55, No. 23-24, 2012, pp. 6530-6537. https://doi.org/10.1016/j.ijheatmasstransfer.2012.06.059
  13. Seo, S.W., Ha, M.S., Kwon, O.Y., Choi, H.S., "Improvement of Electrical Conductivity of Carbon-Fiber Reinforced Plastics by Nano-particles Coating," Journal of the Korean Society for Composite Materials, Vol. 23, No. 6, 2010, pp. 1-6. https://doi.org/10.7234/kscm.2010.23.6.001
  14. Ha, M.S., Kwon, O.Y, Choi, H.S., "Improved Electrical Conductivity of CFRP by Conductive Nano-Paricles Coating for lightning Strike Protection," Journal of the Korean Society for Composite Materials, Vol. 23, No. 1, 2010, pp. 31-36. https://doi.org/10.7234/kscm.2010.23.1.031
  15. Barbero, E. J., Introduction to Composite Materials Design, Taylor & Francis Group, New York, NY, USA, 1999.
  16. Thostenson, E. T., Chou, T.W., "On the elastic properties of carbon nanotube-based composites: modeling and characterization," Journal of Physics D: Applied Physics, Vol. 36, No. 5, 2003, pp. 573-583. https://doi.org/10.1088/0022-3727/36/5/323
  17. Incropera, F.P., Dewitt, D.P., Bergman, T.L., Lavine, A.S., Fundamentals of Heat and Mass Transfer (6th edition), John Wiley & Sons, Hoboken, NJ, USA, 2007.
  18. Holman JP, Heat Transfer (9th edition), Gyeongmunsa, Seoul, 2007.

피인용 문헌

  1. Thermal Characteristics of Hybrid Composites for Application to Surfboard vol.28, pp.4, 2014, https://doi.org/10.5574/KSOE.2014.28.4.351
  2. Electrical and Resistance Heating Properties of Carbon Fiber Heating Element for Car Seat vol.27, pp.2, 2016, https://doi.org/10.14478/ace.2016.1018
  3. Physical and Mechanical Properties of The Lignin-based Carbon Nanofiber-reinforced Epoxy Composite vol.44, pp.3, 2016, https://doi.org/10.5658/WOOD.2016.44.3.406
  4. Preparation and Characterization of Carbon Nanofiber Composite Coated Fabric-Heating Elements vol.39, pp.2, 2015, https://doi.org/10.5850/JKSCT.2015.39.2.247
  5. 무전해 구리도금 된 흑연 섬유의 발열 특성 vol.55, pp.2, 2017, https://doi.org/10.9713/kcer.2017.55.2.264
  6. 항공기 결빙 보호장치의 기술 현황 및 전망 vol.48, pp.11, 2013, https://doi.org/10.5139/jksas.2020.48.11.911