DOI QR코드

DOI QR Code

Prediction of Ballistic Limit for Composite Laminates Subjected to High-velocity Impact Using Static Perforation Test

정적압입 관통 실험을 이용한 복합재 적층판의 고속충격 탄도한계속도 예측

  • 유원영 (충남대학교 항공우주공학과 대학원) ;
  • 김인걸 (충남대학교 항공우주공학과) ;
  • 이석제 (충남대학교 항공우주공학과 대학원) ;
  • 김종헌 (국방과학연구소)
  • Received : 2012.10.02
  • Accepted : 2013.02.12
  • Published : 2013.02.28

Abstract

The ballistic limit of Carbon/Epoxy composite laminates with the finite effective area are predicted by using the quasi-static perforation test and semi-empirical formula. The perforation energy were calculated from force-displacement curve in quasi-static perforation test. Also, the actual ballistic limit and penetration energy were obtained through the high-velocity impact test. The quasi-static perforation test and high-velocity impact test were conducted for the specimens with 3 different effective areas. In the high-velocity impact test, the air gun impact tester were used, and the ballistic and residual velocity was measured. The required inputs for the semi-empirical formula were determined by the quasi-static perforation tests and high-velocity impact tests. The comparison between semi-empirical formula and high-velocity impact test results were conducted and examined. The ballistic limits predicted by semi-empirical formula were agreed well with high-velocity impact test results.

본 논문에서는 유효 면적의 제한이 있는 복합재 적층판의 탄도한계속도를 예측하였다. 탄도한계속도를 예측하기 위해 정적압입 관통실험과 고속충격 실험 그리고 준실험식을 이용하였다. 정적압입 관통실험을 통해 하중-변위 데이터를 취득하고 이를 이용해서 관통에너지를 측정하였다. 고속충격 실험을 통해 실제 관통 속도 및 관통 에너지를 측정하였다. 정적압입 관통실험과 고속충격 실험을 통해 구한 에너지를 이용해 준실험식을 만들고, 준실험식과 고속충돌 실험결과와 비교해 보았다. 위 방법을 이용해 탄도한계속도를 예측하였고 정적압입 관통 실험과 준실험식에 의한 탄도한계속도 예측의 타당성을 확인하였다.

Keywords

References

  1. Abrate, S., "Impact on Lamina Composite Materials," Applied Mechanics Review, Vol. 44 No. 4 , 1991, pp. 155-190. https://doi.org/10.1115/1.3119500
  2. Ruiz, C., and Harding, J., Modelling Impact of Composite Structures Using Small Specimens in Impact Behaviour of Fiver-reinforced Composite materials and Structures, Woodhead Publishing Ltd., 2000.
  3. Reid, S.R., and Wen, H.M., Impact Behaviour of Fiberreinforced Composite Materials and Structures, CRC Press, 2000, pp. 237-279.
  4. Sun, C.T., and Potti, S.V., "A Simple Model to Predict Residual Velocities of Thick Composite Laminates Subjected to High Velocity Impact," International Journal of Impact Engineering, Vol. 18, No. 3, 1996, pp. 339-353. https://doi.org/10.1016/0734-743X(96)89053-1
  5. Potti, S.V., and Sun, C.T., "Prediction of Impact Induced Penetration and Delamination in Thick Composite Laminates," International Journal of Impact Engineering, Vol. 19, No. 1, 1997, pp. 31-48. https://doi.org/10.1016/S0734-743X(96)00005-X
  6. Mines, R.A.W., Roach, A.M., and Jones, N., "High Velocity Perforation Behaviour of Polymer Composite Laminates," International Journal of Impact Engineering, Vol. 22, No. 6, 1999, pp. 561-588. https://doi.org/10.1016/S0734-743X(99)00019-6
  7. Ulven, C., Vaidya, U.K., Hosur, M.V., "Effect of Projectile Shape During Ballistic Perforation of VARTM Carbon/Epoxy Composite Panels," Composite Structures, Vol. 61, No. 1-2, 2003, pp. 143-150. https://doi.org/10.1016/S0263-8223(03)00037-0
  8. Wen, H.M., "Predicting the Penetration and Perforation of FRP Laminates Struck Normally by Projectiles with Different Nose Shapes," Composite Structures, Vol. 49, No. 3, 2000, pp. 321-329. https://doi.org/10.1016/S0263-8223(00)00064-7
  9. You, W.Y., Lee, S.J., Kim, I.G., and Kim, J.H., "Prediction of the Penetration Energy for Composite Laminates Subjected to High-velocity Impact Using the Static Perforation Test," Journal of the Korean Society for Composite Materials, Vol. 25, No. 5, 2012, pp. 147-153. https://doi.org/10.7234/kscm.2012.25.5.147