DOI QR코드

DOI QR Code

Dietary Alpha Lipoic Acid Improves Body Composition, Meat Quality and Decreases Collagen Content in Muscle of Broiler Chickens

  • El-Senousey, H.K. (College of Animal Science and Technology, Northwest A & F University) ;
  • Fouad, A.M. (College of Animal Science and Technology, Northwest A & F University) ;
  • Yao, J.H. (College of Animal Science and Technology, Northwest A & F University) ;
  • Zhang, Z.G. (College of food and bioengineering, Shandong Polytechnic University) ;
  • Shen, Q.W. (College of Animal Science and Technology, Northwest A & F University)
  • Received : 2012.08.07
  • Accepted : 2012.10.17
  • Published : 2013.03.01

Abstract

A total of 192 broiler chicks were used to evaluate the influence of dietary ${\alpha}$-lipoic acid (ALA) on growth performance, carcass characteristics and meat quality of broiler chickens with the purpose of developing a strategy to prevent the occurrence of pale, soft, and exudative (PSE) meat and to improve the meat quality of broilers. At 22 d of age, birds were allocated to 4 ALA treatments (0, 400, 800, and 1200 ppm). The results showed that dietary ALA significantly decreased average feed intake (AFI), average daily gain (ADG), final live body weight (BW) and carcass weight (p<0.05), while no difference in feed conversion ratio (FCR) was detected among chickens fed with and without ALA. Abdominal fat weight significantly decreased (p<0.05) for broilers fed 800 and 1200 ppm ALA. However when calculated as the percentage of carcass weight there was no significant difference between control and ALA treatments. Meat quality measurements showed that dietary ALA regulated postmortem glycolysis and improved meat quality as evidenced by increased muscle pH and decreased drip loss of meat (p<0.05). Although ALA did not change the tenderness of meat as indicated by meat shear force, dietary ALA decreased collagen content and mRNA expression of COL3A1 gene (p<0.05). In conclusion, the results indicate that dietary ALA may contribute to the improvement of meat quality in broilers.

Keywords

References

  1. Ain Baziz, H., P. A. Geraert, J. C. Padilha and S. Guillaumin. 1996. Chronic heat exposure enhances fat deposition and modifies muscle and fat partition in broiler carcasses. Poult. Sci. 75:505-513. https://doi.org/10.3382/ps.0750505
  2. Barbut, S. 1997. Problem of pale soft exudative meat in broiler chickens. Br. Poult. Sci. 38:355-358. https://doi.org/10.1080/00071669708418002
  3. Barbut, S. 2009. Pale, soft, and exudative poultry meat-Reviewing ways to manage at the processing plant. Poult. Sci. 88:1506-1512. https://doi.org/10.3382/ps.2009-00118
  4. Bendall, J. R. and H. J. Swatland. 1988. A review of the relationship of pH with physical aspects of pork quality. Meat Sci. 24:85-126. https://doi.org/10.1016/0309-1740(88)90052-6
  5. Berri, C., M. Debut, V. Sante-Lhoutellier, C. Arnould, B. Boutten, N. Sellier, E. Baeza, N. Jehl, Y. Jego, M. J. Duclos and E. Le Bihan-Duval. 2005. Variations in chicken breast meat quality: implications of struggle and muscle glycogen content at death. Br. Poult. Sci. 46:572-579. https://doi.org/10.1080/00071660500303099
  6. Bilska, A. and L .Wlodek. 2005. Lipoic acid - the drug of the future? Pharmacol. Rep. 57:570-577.
  7. Briskey, E. J. 1964. Etiological status and associated studies of pale, soft, exudative porcine musculature. Adv. Food Res. 13:89-178. https://doi.org/10.1016/S0065-2628(08)60100-7
  8. Chen, P., Q. G. Ma, C. Ji, J.Y. Zhang, L. H. Zhao, Y. Zhang and Y. Z. Jie. 2011. Dietary lipoic acid influences antioxidant capability and oxidative status of broilers. Int. J. Mol. Sci. 12:8476-8488. https://doi.org/10.3390/ijms12128476
  9. Cho, K. J., H. E. Moon, H. Moini, L. Packer, D. Y. Yoon and A. S. Chung. 2003. Alpha-lipoic acid inhibits adipocyte differentiation by regulating pro-adipogenic transcription factors via mitogen-activated protein kinase pathways. J. Biol. Chem. 278:34823-34833. https://doi.org/10.1074/jbc.M210747200
  10. Cross, H. R., J. L Carpenter and G. C. Smith. 1973. Effect of intramuscular collagen and elastin on bovine muscle tenderness. J. Food Sci. 38:998-1003. https://doi.org/10.1111/j.1365-2621.1973.tb02133.x
  11. Duclos, M. J., C. Berri and E. Le Bihan-Duval. 2007. Muscle growth and meat quality. J. Appl. Poult. Res. 16:107-112. https://doi.org/10.1093/japr/16.1.107
  12. Eason, R. C., H. E. Archer, S. Akhtar and C. J. Bailey. 2002. Lipoic acid increases glucose uptake by skeletal muscles of obese-diabetic ob/ob mice. Diabetes Obes. Metab. 4:29-35. https://doi.org/10.1046/j.1463-1326.2002.00171.x
  13. Estrada, D. E., H. S. Ewart, T. Tsakiridis, A. Volchuk, T. Ramlal, H. Tritschler and A. Klip. 1996. Stimulation of glucose uptake by the natural coenzyme alpha-lipoic acid/thioctic acid: participation of elements of the insulin signaling pathway. Diabetes 45:1798-1804. https://doi.org/10.2337/diabetes.45.12.1798
  14. Evans, J. L. and I. D. Goldfine. 2000. Alpha-lipoic acid: a multifunctional antioxidant that improves insulin sensitivity in patients with type 2 diabetes. Diabetes Technol. Ther. 2:401-413. https://doi.org/10.1089/15209150050194279
  15. Goll, D. E., R. W. Bray and W. G. Hoerstra. 1963. Age associated changes in muscle composition. The isolation and properties of a collagenous residue from bovine muscle. J. Food Sci. 28:503-509 https://doi.org/10.1111/j.1365-2621.1963.tb00234.x
  16. Hamano, Y., S. Sugawara, Y. Kamota and E. Nagai. 1999. Involvement of lipoic acid in plasma metabolites, hepatic oxygen consumption, and metabolic response to a beta-agonist in broiler chickens. Br. J. Nutr. 82:497-503.
  17. Hamano, Y. 2002. Influence of lipoic acid on lipid metabolism and beta-adrenergic response to intravenous or oral administration of clenbuterol in broiler chickens. Reprod. Nutr. Dev .42:307-316. https://doi.org/10.1051/rnd:2002027
  18. Jacob, S., E. J. Henriksen, A. L. Schiemann, I. Simon, D. E. Clancy, H. J. Tritschler, W. I. Jung, H. J. Augustin and G. J. Dietze. 1995. Enhancement of glucose disposal in patients with type 2 diabetes by alpha-lipoic acid. Arzneimittelforschung 45:872-874.
  19. Jacob, S., E. J. Henriksen, H. J. Tritschler, H. J. Augustin and G. J. Dietze. 1996a. Improvement of insulin-stimulated glucose-disposal in type 2 diabetes after repeated parenteral administration of thioctic acid. Exp. Clin. Endocrinol. Diabetes 104:284-288. https://doi.org/10.1055/s-0029-1211455
  20. Jacob, S., P. Ruus, R. Hermann, H. J. Tritschler, E. Maerker, W. Renn, H. J. Augustin, G. J. Dietze and K. Rett. 1999. Oral administration of RAC-alpha-lipoic acid modulates insulin sensitivity in patients with type-2 diabetes mellitus: a placebo-controlled pilot trial. Free Radic. Biol. 27:309-314. https://doi.org/10.1016/S0891-5849(99)00089-1
  21. Jacob, S., R. S. Streeper, D. L. Fogt, J. Y. Hokama, H. J. Tritschler, G. J. Dietze and E. J Henriksen. 1996b. The antioxidant alpha-lipoic acid enhances insulin-stimulated glucose metabolism in insulin-resistant rat skeletal muscle. Diabetes 45:1024-1029. https://doi.org/10.2337/diabetes.45.8.1024
  22. Jeacocke, R. E. 1977. Continuous measurements of the pH (hydrogen ion concentration) of beef muscle in intact beef carcasses. J. Food Technol. 12:375-386.
  23. Kim, M. S., J. Y. Park, C. Namkoong, P. G. Jang, J. W. Ryu, H. S. Song, J. Y. Yun, I. S. Namgoong, J. Ha, I. S. Park, I. K. Lee, B. Viollet, J. H. Youn, H. K. Lee and K. U. Lee. 2004. Anti-obesity effects of alpha-lipoic acid mediated by suppression of hypothalamic AMP-activated protein kinase. Nat. Med. 10:727-733. https://doi.org/10.1038/nm1061
  24. Koh, E. H., W. J. Lee, S. A. Lee, E. H. Kim, E. H. Cho, E. Jeong, D.W. Kim, M. S. Kim, J.Y. Park, K. G. Park, H. J. Lee, I. K. Lee, S. Lim, H. C. Jang, K. H. Lee and K. U. Lee. 2011. Effects of alpha-lipoic acid on body weight in obese subjects. Am. J. Med. 124:85.e81-88.
  25. Lantier, L., R. Mounier, J. Leclerc, M. Pende, M. Foretz and B. Viollet. 2010. Coordinated maintenance of muscle cell size control by AMP-activated protein kinase. FASEB J. 24:3555-3561. https://doi.org/10.1096/fj.10-155994
  26. Lee, Y. B and Y. I. Choi. 1999. PSE (pale, soft, exudative) pork: The causes and solutions - review. Asian-Aust. J. Anim. Sci. 12:244-252. https://doi.org/10.5713/ajas.1999.244
  27. Liu, A., T. Nishimura and K. Takahashi. 1996. Relationship between structural properties of intramuscular connective tissue and toughness of various chicken skeletal muscles. Meat Sci. 43:43-49. https://doi.org/10.1016/0309-1740(95)00065-8
  28. Lin, H., S. J. Sui, H. C. Jiao, K. J. Jiang, J. P. Zhao and H. Dong. 2007. Effects of diet and stress mimicked by corticosterone administration on early postmortem muscle metabolism of broiler chickens. Poult. Sci. 86:545-554. https://doi.org/10.1093/ps/86.3.545
  29. Livak, K. J. and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402-408. https://doi.org/10.1006/meth.2001.1262
  30. Molette, C., H. Remignon and R. Babile. 2003. Effect of rate of pH fall on turkey breast meat quality. Br. Poult. Sci. 44:787-788. https://doi.org/10.1080/00071660410001666781
  31. NRC. 1994. Nutrient Requirements of Poultry. National Academy Press, Washington, DC, USA.
  32. Offer, G. 1991. Modelling of the formation of pale, soft and exudative meat: Effects of chilling regime and rate and extent of glycolysis. Meat Sci. 30:157-184. https://doi.org/10.1016/0309-1740(91)90005-B
  33. Packer, L., E. H. Witt and H. J. Tritschler. 1995. alpha-Lipoic acid as a biological antioxidant. Free Radic. Biol. Med. 19:227-250. https://doi.org/10.1016/0891-5849(95)00017-R
  34. Remignon, H., V. Desrosiers, G. Marche. 1996. Influence of increasing breast meat yield on muscle histology and meat quality in the chicken. Reprod. Nutr. Dev. 36:523-530. https://doi.org/10.1051/rnd:19960508
  35. SAS Institute. 2001. JMP IN Start Statistics, (Version 4.0.4. Edition 2.). SAS Inst. Inc., Cary, N.C. USA.
  36. Savell, J. W., H. R. Cross, J. J. Francis, J. W. Wise, D. S. Hale, D. L. Wilkes and G. C. Smith. 1989. National consumer retail beef study: Interaction of beef trim level price and grade on consumer acceptance of beef steaks and roasts. Food Qual. 12:251-274. https://doi.org/10.1111/j.1745-4557.1989.tb00328.x
  37. Schmidt, T. B., K. C. Olson, PAS, D. L. Meyer, M. M. Brandt, G. K. Rentfrow, C. A. Stahl and E. P. Berg. 2005. Effects of lipoic acid supplementation on finishing steer growth performance, carcass merit, beef tenderness, and beef retail display properties. Prof. Anim. Scient. 21:480-485.
  38. Sayre, R. N., E. J Briskey and W. G. Hoekstra. 1963. Effect of excitement, fasting and sucrose feeding on porcine muscle phosphorylase and postmortem glycolysis. J. Food Sci. 28:472-477. https://doi.org/10.1111/j.1365-2621.1963.tb00229.x
  39. Shen, Q. W., C. S. Jones, N. Kalchayanand, M. J. Zhu and M. Du. 2005. Effect of dietary $\alpha$-lipoic acid on growth, body composition, muscle pH, and AMP-activated protein kinase phosphorylation in mice. J. Anim. Sci. 83:2611-2617.
  40. Shen, Q. W., M. J. Zhu, J. Tong, J. Ren and M. Du. 2007. Ca2+/calmodulin-dependent protein kinase kinase is involved in AMP-activated protein kinase activation by alpha-lipoic acid in C2C12 myotubes. Am. J. Physiol. Cell Physiol. 293:C1395-C1403. https://doi.org/10.1152/ajpcell.00115.2007
  41. Streeper, R. S., E. J. Henriksen, S. Jacob, J. Y. Hokama, D. L. Fogt and H. J. Tritschler. 1997. Differential effects of lipoic acid stereoisomers on glucose metabolism in insulin-resistant skeletal muscle. Am. J. Physiol. 273:E185-191.
  42. Torrescano, G., E. A. Sanchez, B. Gimenez, P. Roncales and J. A. Beltran. 2003. Shear values of raw samples of 14 bovine muscles and their relation to muscle collagen characteristics. Meat Sci. 64:85-91. https://doi.org/10.1016/S0309-1740(02)00165-1
  43. Wilkins, L. J., S. N. Brown, A. J. Phillips and P. D.Warriss. 2000. Variation in the colour of broiler breast fillets in the UK. Br. Poult. Sci. 41:308-312. https://doi.org/10.1080/713654935
  44. Woelfel, R. L., C. M. Owens, E. M. Hirschler, R. Martinez-Dawson and A. R. Sams. 2002. The characterization and incidence of pale, soft, exudative broiler meat in a commercial plant. Poult. Sci. 81:579-584. https://doi.org/10.1093/ps/81.4.579
  45. Zerehdaran, S., A. L. Vereijken, J. A. van Arendonk and E. H. van der Waaijt. 2004. Estimation of genetic parameters for fat deposition and carcass traits in broilers. Poult. Sci. 83:521-525. https://doi.org/10.1093/ps/83.4.521
  46. Zhang, Y., K. Hongtrakul, Q. G. Ma, L. T. Liu and X. X. Hu. 2009. Effects of dietary alpha-lipoic acid on anti-oxidative ability and meat quality in Arbor Acres broilers. Asian-Aust. J. Anim. Sci. 22:1195-1201. https://doi.org/10.5713/ajas.2009.90101

Cited by

  1. Nutritional Factors Affecting Abdominal Fat Deposition in Poultry: A Review vol.27, pp.7, 2014, https://doi.org/10.5713/ajas.2013.13702
  2. Effects of alpha-lipoic acid supplementation in different stages on growth performance, antioxidant capacity and meat quality in broiler chickens vol.55, pp.5, 2014, https://doi.org/10.1080/00071668.2014.958057
  3. Effects of Dietary L-carnosine and Alpha-lipoic Acid on Growth Performance, Blood Thyroid Hormones and Lipid Profiles in Finishing Pigs vol.28, pp.10, 2015, https://doi.org/10.5713/ajas.14.0604
  4. Growth performance, intestinal morphology, and meat quality in relation to alpha-lipoic acid associated with vitamin C and E in broiler chickens under tropical conditions vol.45, pp.3, 2016, https://doi.org/10.1590/S1806-92902016000300005
  5. Effects of dietary α-lipoic acid on carcass characteristics, antioxidant capability and meat quality in Hainan black goats vol.16, pp.1, 2017, https://doi.org/10.1080/1828051X.2016.1263546
  6. Alpha-lipoic acid: An inimitable feed supplement for poultry nutrition pp.09312439, 2017, https://doi.org/10.1111/jpn.12693
  7. Effects of α-lipoic acid supplementation on sexual difference of growth performance, heat exposure-induced metabolic response and lipid peroxidation of raw meat in broiler chickens vol.55, pp.3, 2013, https://doi.org/10.1080/00071668.2014.903559
  8. Alteration of fatty acid profile and nucleotide-related substances in post-mortem breast meat of α-lipoic acid-fed broiler chickens vol.57, pp.4, 2013, https://doi.org/10.1080/00071668.2016.1184227
  9. Effect of stocking density and alpha-lipoic acid on the growth performance, physiological and oxidative stress and immune response of broilers vol.32, pp.12, 2013, https://doi.org/10.5713/ajas.18.0939
  10. Effect of vitamin E and alpha lipoic acid on intestinal development associated with wooden breast myopathy in broilers vol.100, pp.3, 2013, https://doi.org/10.1016/j.psj.2020.12.049
  11. Alpha-Lipoic Acid as a Nutritive Supplement for Humans and Animals: An Overview of Its Use in Dog Food vol.11, pp.5, 2021, https://doi.org/10.3390/ani11051454
  12. Protective Effects of α-Lipoic Acid and Chlorogenic Acid on Cadmium-Induced Liver Injury in Three-Yellow Chickens vol.11, pp.6, 2021, https://doi.org/10.3390/ani11061606
  13. Time for a Paradigm Shift in Animal Nutrition Metabolic Pathway: Dietary Inclusion of Organic Acids on the Production Parameters, Nutrient Digestibility, and Meat Quality Traits of Swine and Broilers vol.11, pp.6, 2013, https://doi.org/10.3390/life11060476
  14. Single and combined effects of formic acid and Saccharomyces cerevisiae on breast meat quality of the Indonesian indigenous crossbred chickens vol.803, pp.1, 2021, https://doi.org/10.1088/1755-1315/803/1/012064
  15. Alpha-tocopherol acetate and alpha lipoic acid may mitigate the development of wooden breast myopathy in broilers at an early age vol.62, pp.5, 2013, https://doi.org/10.1080/00071668.2021.1927985
  16. Effect of dietary replacement of soybean meal with linseed meal on feed intake, growth performance and carcass quality of broilers vol.7, pp.11, 2013, https://doi.org/10.1016/j.heliyon.2021.e08297
  17. Fiber characteristics and meat quality of different muscular tissues from slow- and fast-growing broilers vol.101, pp.1, 2013, https://doi.org/10.1016/j.psj.2021.101537