DOI QR코드

DOI QR Code

환원-확산법에 의해 제조된 Sm-Fe 합금분말의 질화거동 및 자기특성에 미치는 Mn첨가 효과

The Effect of Mn Addition on Nitrogenation Behavior and Magnetic Properties of Sm-Fe Alloy Powder Produced by Reduction-diffusion Method

  • 서영택 (한국기계연구원 부설 재료연구소 분말/세라믹연구본부) ;
  • 백연경 (한국기계연구원 부설 재료연구소 분말/세라믹연구본부) ;
  • 이정구 (한국기계연구원 부설 재료연구소 분말/세라믹연구본부) ;
  • 최철진 (한국기계연구원 부설 재료연구소 분말/세라믹연구본부)
  • Seo, Young-Taek (Powder/Ceramics Division, Korea Institute of Materials Science) ;
  • Baek, Youn-Kyoung (Powder/Ceramics Division, Korea Institute of Materials Science) ;
  • Lee, Jung-Goo (Powder/Ceramics Division, Korea Institute of Materials Science) ;
  • Choi, Chul-Jin (Powder/Ceramics Division, Korea Institute of Materials Science)
  • 투고 : 2013.01.11
  • 심사 : 2013.02.21
  • 발행 : 2013.02.28

초록

In the present study, we systematically investigated the effect of Mn addition on nitrogenation behavior and magnetic properties of Sm-Fe powders produced by reduction-diffusion process. Alloy powders with only $Sm_2(Fe,Mn)_{17}$ single phase were successfully produced by the reduction-diffusion process. The coercivity of $Sm_2(Fe,Mn)_{17}$ powder rapidly increased during nitrogenation and reached the maximum of 637 Oe after 16 hours. After further nitrogenation, it decreased. In contrast, the coercivity of $Sm_2Fe_{17}$ powder gradually increased during nitrogenation for 24 hours. The coercivity of $Sm_2(Fe,Mn)_{17}$ powder was higher than that of $Sm_2Fe_{17}$ powder at the same condition of nitrogenation. It was considered that the Mn addition facilitates the nitrogenation of $Sm_2Fe_{17}$ powder and enhances the coercivity.

키워드

참고문헌

  1. http://ies.jrc.ec.europa.eu/our-activities/global-support/ global-emission-inventory.html
  2. L. Ping and L. He-ping: Procedia Engineering., 15 (2011) 309. https://doi.org/10.1016/j.proeng.2011.08.060
  3. J. G. Lee and C. J. Choi: Trends in Metals & Materials Engineering., 24 (2010) 4 (Korean).
  4. J. M. D. Coey and H. Sun: J. Magn. Mater., 87 (1990) L251. https://doi.org/10.1016/0304-8853(90)90756-G
  5. Y. Otani, D. P. F. Hurley, H. Sun and J. M. D. Coey: J. Appl. Phys., 69 (1991) 5584. https://doi.org/10.1063/1.347957
  6. J. Ye, F. Li, Y. Liu, S. Gao and M. Tu: J. Rare Earth., 23 (2005) 53.
  7. J. J. Wyslocki, P. Pawlik and W. Kaszuwara: J. Magn. Magn. Mater., 231 (2001) 272.
  8. N. Imaoka, T. Iriyama, S. Itoh, A. Okamoto and T. Katsumata: J. Alloys Comp., 222 (1995) 73. https://doi.org/10.1016/0925-8388(94)04920-3
  9. R. E. Cech: JOM., 26 (1974) 32.
  10. A. Kawamoto et al.: IEEE Trans Magn., 35 (1999) 3322. https://doi.org/10.1109/20.800512
  11. V. R. Carrarena, T. Ogasaware, M. S. Pinho and J. L. Capitaneo: Latin American Applied Research., 36 (2006) 137.
  12. S. Hirosawa and H. Tomizswa: J. Magn. Soc. Japan., 21 (1997) 160.
  13. T. Ishikawa: The Japan Society Applied Elecro magnetic and Mechanics., 10 (2002) 287.
  14. H. Kwak, J. G. Lee and C. J. Choi: J. Kor. Powder Metallurgy Instiute., 16 (2009) 5 (Korean).
  15. J. G. Lee, S. W. Kang, S. J Park, Y. W. Oh and C. J. Choi: Kor. J. Met. Mater., 48 (2010) 9 (Korean).
  16. J. G. Lee, S. W. Kang, P. Z. Si and C. J. Choi: J. Magnetics., 16 (2011) 2 .
  17. D. C. Jiles: Acta Mater., 51 (2003) 5907. https://doi.org/10.1016/j.actamat.2003.08.011
  18. T. Ishikawa, A. Kawamoto and K. Ohmori: J. Magn. Soc. Japan., 24 (2000) 1394.
  19. K. Ohmori, N. Oshimura, T. Iseki and T. Ishikawa: Magnetics Conference., 24 (2006) 915.
  20. D. H. Kim, H. M. Kwon and T. K. Kim: J. Kor. Magnetics Society., 5 (1995) 5 (Korean).