DOI QR코드

DOI QR Code

A Note on Model Selection in Mixture Experiments with Process Variables

공정변수를 갖는 혼합물 실험에서 모형선택의 한 방법

  • Kim, Jung Il (Department of Statistics, Kangwon National University)
  • Received : 2013.01.11
  • Accepted : 2013.02.20
  • Published : 2013.02.28

Abstract

In this paper, we consider the mixture components-process variables model and propose a model selection strategy using MTS. This strategy is illustrated using an example that involves three mixture components and two process variables in a bread making experiment that was studied in several literatures.

이 논문에서는 공정변수를 갖는 혼합물 실험에 대하여 적절한 모형을 선택하는 한 방법으로 혼합물 성분의 공선성에 로버스트한 성질을 갖는 마할라노비스-다구찌 시스템을 활용한 전략을 소개한다. 여러 문헌에서 언급된 3개의 혼합물 성분과 2개의 공정변수를 갖는 제빵 실험 사례를 대상으로 이 전략적 방법을 적용하여 적절한 모형을 선택하였다.

Keywords

References

  1. Becker, N. G. (1968). Models for the response of a mixture, Journal of the Royal Statistical Society, Series B (Methodological), 30, 349-358.
  2. Cornell, J. A. (2002). Experiments with Mixtures, John Wiley & Sons, Inc.
  3. Draper, N. R. and John, St. (1977). A mixtures model with inverse terms, Technometrics, 19, 37-46. https://doi.org/10.2307/1268252
  4. Lim, Y. (2011). Practical designs for mixture component-process experiments, Journal of Korean Society for Quality Management, 39, 400-411.
  5. Lim, Y. (2012). Analysis of mixture experimental data with process variables, Journal of Korean Society for Quality Management, 40, 347-358. https://doi.org/10.7469/JKSQM.2012.40.3.347
  6. Nas, T., Fargestad, E. M. and Cornell, J. A. (1998). A comparison of methods for analyzing data from a three component mixture experiment in the presence of variation created by two process variables, Chemometrics and Intelligent Laboratory System, 41, 221-235. https://doi.org/10.1016/S0169-7439(98)00056-2
  7. Prescott, P. (2004). Modelling in mixture experiments including interactions with process variables, Quality Technology & Quantitative Management, 1, 87-103. https://doi.org/10.1080/16843703.2004.11673066
  8. Taguchi, G., Chowdhury, S. and Wu, Y.(2005). Taguchi's Quality Engineering Handbook, John Wiley & Sons, Inc.
  9. Taguchi, G. and Jugulum, R. (2002). The Mahalanobis-Taguchi Strategy, John Wiley & Sons, Inc.
  10. Taguchi, G. and Rajesh, J. (2000). New trends in multivariate diagnosis, Sankhya: The Indian Journal of Statistics, 62, 233-248.