References
- Becker, N. G. (1968). Models for the response of a mixture, Journal of the Royal Statistical Society, Series B (Methodological), 30, 349-358.
- Cornell, J. A. (2002). Experiments with Mixtures, John Wiley & Sons, Inc.
- Draper, N. R. and John, St. (1977). A mixtures model with inverse terms, Technometrics, 19, 37-46. https://doi.org/10.2307/1268252
- Lim, Y. (2011). Practical designs for mixture component-process experiments, Journal of Korean Society for Quality Management, 39, 400-411.
- Lim, Y. (2012). Analysis of mixture experimental data with process variables, Journal of Korean Society for Quality Management, 40, 347-358. https://doi.org/10.7469/JKSQM.2012.40.3.347
- Nas, T., Fargestad, E. M. and Cornell, J. A. (1998). A comparison of methods for analyzing data from a three component mixture experiment in the presence of variation created by two process variables, Chemometrics and Intelligent Laboratory System, 41, 221-235. https://doi.org/10.1016/S0169-7439(98)00056-2
- Prescott, P. (2004). Modelling in mixture experiments including interactions with process variables, Quality Technology & Quantitative Management, 1, 87-103. https://doi.org/10.1080/16843703.2004.11673066
- Taguchi, G., Chowdhury, S. and Wu, Y.(2005). Taguchi's Quality Engineering Handbook, John Wiley & Sons, Inc.
- Taguchi, G. and Jugulum, R. (2002). The Mahalanobis-Taguchi Strategy, John Wiley & Sons, Inc.
- Taguchi, G. and Rajesh, J. (2000). New trends in multivariate diagnosis, Sankhya: The Indian Journal of Statistics, 62, 233-248.