DOI QR코드

DOI QR Code

역가우스분포에 대한 적합도 평가를 위한 그래프 방법

A Graphical Method to Assess Goodness-of-Fit for Inverse Gaussian Distribution

  • 최병진 (경기대학교 응용정보통계학과)
  • Choi, Byungjin (Department of Applied Information Statistics, Kyonggi University)
  • 투고 : 2012.11.14
  • 심사 : 2012.12.10
  • 발행 : 2013.02.28

초록

Q-Q 플롯은 자료에 대한 분포적 가정을 평가하기 위해서 사용되는 편리하고 효과적인 그래프 방법이다. Q-Q 플롯은 자료의 분포와 이론적 분포를 비교하기 위한 확률플롯으로 자료에서의 분위수와 이에 대응하는 이론적 분위수를 각각 수직축과 수평축으로 해서 그린 산점도의 형태를 취한다. 본 논문에서는 확률변수 X가 위치모수 ${\mu}$와 척도수 ${\lambda}$를 가지는 역가우스분포를 따르면, 변환된 확률변수 $Y={\mid}\sqrt{\lambda}(X-{\mu})/{\mu}\sqrt{X}{\mid}$는 평균이 0이고 분산이 1인 표준반접정규분포를 하게 되는 분포적 결과를 활용하여 역가우스분포 Q-Q 플롯의 구축방법을 소개한다. 역가우스분포와 다른 분포를 따르는 자료를 대상으로 그린 Q-Q 플롯에서 나타나는 점들의 형태를 알아보고자 모의실험을 수행하고 그 결과를 제시한다. 실제 자료에 대한 사례분석을 통해 제안한 Q-Q 플롯의 유용성을 보인다.

A Q-Q plot is an effective and convenient graphical method to assess a distributional assumption of data. The primary step in the construction of a Q-Q plot is to obtain a closed-form expression to represent the relation between observed quantiles and theoretical quantiles to be plotted in order that the points fall near the line y = a + bx. In this paper, we introduce a Q-Q plot to assess goodness-of-fit for inverse Gaussian distribution. The procedure is based on the distributional result that a transformed random variable $Y={\mid}\sqrt{\lambda}(X-{\mu})/{\mu}\sqrt{X}{\mid}$ follows a half-normal distribution with mean 0 and variance 1 when a random variable X has an inverse Gaussian distribution with location parameter ${\mu}$ and scale parameter ${\lambda}$. Simulations are performed to provide a guideline to interpret the pattern of points on the proposed inverse Gaussian Q-Q plot. An illustrative example is provided to show the usefulness of the inverse Gaussian Q-Q plot.

키워드

참고문헌

  1. Blom, G. (1958). Statistical Estimates and Transformed Beta Variables, John Wiley, New York.
  2. Chambers, J. M., Cleveland, W. S., Kleiner, B. and Tukey, P. A. (1983). Graphical Methods for Data Analysis, Duxbury Press, Boston.
  3. Chhikara, R. S. and Folks, J. L. (1989). The Inverse Gaussian Distribution: Theory, Methodology, and Applications, Marcel Dekker, New York.
  4. Edgeman, R. L. (1990). Assessing the inverse Gaussian distribution assumption, IEEE Transactions on Reliability, 39, 352-355. https://doi.org/10.1109/24.103017
  5. Edgeman, R. L., Scott, R. C. and Pavur, R. J. (1988). A modified Kolmogorov-Smirnov test for the inverse density with unknown parameters, Communications in Statistics-Simulation and Computation, 17, 1203-1212. https://doi.org/10.1080/03610918808812721
  6. Michael, J. R., Schucany, W. R. and Haas, R. W. (1976). Generating random variables using transformation with multiple roots, The American Statistician, 30, 88-90.
  7. Mudholkar, G. S. and Tian, L. (2002). An entropy characterization of the inverse Gaussian distribution and related goodness-of-fit test, Journal of Statistical Planning and Inference, 102, 211-221. https://doi.org/10.1016/S0378-3758(01)00099-4
  8. Nelson, W. B. (1975). Analysis of accelerated life test data-least squares methods for the inverse power law model, IEEE Transactions on Reliability, 24, 103-107. https://doi.org/10.1109/TR.1975.5215105
  9. Pavur, R. J., Edgeman, R. L. and Scott, R. C. (1992). Quadratic statistics for the goodness-of-fit test of the inverse Gaussian distribution, IEEE Transactions on Reliability, 41, 118-123. https://doi.org/10.1109/24.126682
  10. Schrodinger, E. (1915). Zur theorie der fall und steigversuche an teilchen mit Brownscher bewegung, Physikalische Zeitschrift, 16, 289-295.
  11. Seshadri, V. (1999). The Inverse Gaussian Distribution: Statistical Theory and Applications, Springer, New York.
  12. Shuster, J. J. (1968). On the inverse Gaussian distribution function, Journal of the American Statistical Association, 63, 1514-1516. https://doi.org/10.1080/01621459.1968.10480942
  13. Smoluchowsky, M. V. (1915). Notizuber die berechning der Brownschen molkularbewegung bei des ehrenhaft-milikanchen versuchsanordnung, Physikalische Zeitschrift, 16, 318-321.
  14. Tweedie, M. K. (1957a). Statistical properties of inverse Gaussian distributions-I, Annals of Mathematical Statistics, 28, 362-377. https://doi.org/10.1214/aoms/1177706964
  15. Tweedie, M. K. (1957b). Statistical properties of inverse Gaussian distributions-II, Annals of Mathematical Statistics, 28, 696-705. https://doi.org/10.1214/aoms/1177706881
  16. Vasicek, O. (1976). A test for normality based on sample entropy, Journal of the Royal Statistical Society, Series B, 38, 54-59.

피인용 문헌

  1. Filtering Entities to Optimize Identification of Adverse Drug Reaction From Social Media: How Can the Number of Words Between Entities in the Messages Help? vol.3, pp.2, 2017, https://doi.org/10.2196/publichealth.6577