DOI QR코드

DOI QR Code

Theoretical Backgrounds of Basin Concentration Time and Storage Coefficient and Their Empirical Formula

유역 집중시간 및 저류상수의 이론적 배경과 경험식

  • Lee, Jiho (School of Civil, Environmental and Architectural Engineering, College of Engineering, Korea University) ;
  • Yoo, Chulsang (School of Civil, Environmental and Architectural Engineering, College of Engineering, Korea University) ;
  • Sin, Jiye (School of Civil, Environmental and Architectural Engineering, College of Engineering, Korea University)
  • 이지호 (고려대학교 대학원 건축사회환경공학부) ;
  • 유철상 (고려대학교 공과대학 건축사회환경공학부) ;
  • 신지예 (고려대학교 대학원 건축사회환경공학부)
  • Received : 2012.07.04
  • Accepted : 2012.10.11
  • Published : 2013.02.28

Abstract

This study proposes proper forms of empirical formulas for the concentration time and storage coefficient based on their theoretical backgrounds and evaluates several existing empirical formulas by comparing them with the formula proposed in this study. Additionally, empirical formulas for the concentration time and storage coefficient of the Chungju Dam basin were derived using the forms proposed by considering their theoretical backgrounds, and compared with exiting empirical formulas. The results derived are summarized as follows. (1) The concentration time of a basin is proportional to the square of the main channel length, but inversely proportional to the channel slope, as the flood flow is generally turbulent. (2) The storage coefficient is proportional to the concentration time. (3) The comparison results with existing empirical formulas for the concentration time indicates that the empirical formulas like the Kirpich, Kraven (I), Kraven (II), California DoT, Kerby, SCS, and Morgali & Linsley are in line with the form proposed in this study. Among existing empirical formulas for the storage coefficient, the Clak, Russell, Sabol and Jung are found to be well matched to this study. (4) The application results to Chungju Dam basin indicates that among empirical formulas for the concentration time, the Jung, Yoon, Kraven (I), and Kraven (II) show relatively similar results to the observed in this study, but the Rziha shows abnormal results. Among the empirical formulas for the storage coefficient, the Yoon and Hong, Jung, Lee, and Yoon show somewhat reasonable results, but the Sabol shows abnormal results. In conclusion, the empirical formulas for the concentration time and storage coefficient developed in Korea are found to reflect the basin characteristics of Korea better.

본 연구에서는 유역 집중시간과 저류상수의 이론적 배경을 바탕으로 적절한 경험식의 형태를 제시하고 기존의 경험식의 형태와 비교 평가하였다. 추가로, 제시된 경험식의 형태를 이용하여 충주댐 유역의 집중시간 및 저류상수의 경험식을 유도하고, 유도된 경험식과 기존의 경험식들을 비교하였다. 그 결과를 정리하면 다음과 같다. (1) 유역의 집중시간에 대한 경험공식의 형태는 유로연장의 제곱에 비례하고 유로경사에 반비례하는 형태로 나타난다. (2) 저류상수는 집중시간에 비례하는 형태로 나타난다. (3) 기존 매개변수에 관한 경험식을 검토한 결과, 집중시간의 경우에는 Kirpich 공식, Kraven (I) 공식, Kraven (II) 공식, California DoT 공식, Kerby 공식, SCS 공식 및 Morgali and Linsley 공식 등이 이러한 이론적 배경을 잘 따르고 있는 것으로 나타난다. 저류상수의 경우, Clark 공식, Russell 공식, Sabol 공식 및 정성원 공식 등이 본 저류상수와 집중시간의 비례관계를 매우 잘 만족하는 것으로 나타난다. (4) 기존의 경험식을 충주댐 유역에 적용한 결과, 집중시간의 경험식 중 정성원 공식, 윤태훈 등 공식, Kraven (I) 공식 및 Kraven (II) 공식은 추정한 집중시간과 비교적 유사한 결과를 보였으나, Rziha 공식은 비정상적인 결과를 나타내는 것으로 나타났다. 저류상수의 경우에는 윤석영과 홍일표 공식, 정성원 공식, 이정식 등 공식 및 윤태훈 등 공식이 어느 정도 합리적인 결과를 보인 반면, Sabol 공식의 경우에는 비정상적인 결과가 유도되었다. 결론적으로 국내의 집중시간 및 저류상수에 대한 경험공식이 국내 유역의 특성을 잘 반영하는 것으로 나타났다.

Keywords

References

  1. Clark, C.O. (1945). "Storage and the uni hydrograph." Transactions of the American Society of Civil Engineers, Vol. 110, pp. 1419-1446.
  2. Dooge, J.C.I., Strupczewski, W.G., and Napiorkowski, J. (1982). "Hydrodynamic derivation of storage parameters of muskingum model." Journal of Hydrology, Vol. 54, No. 4, pp. 371-387. https://doi.org/10.1016/0022-1694(82)90163-9
  3. Hack, J.T. (1957). Studied of lingitudinal profiles in virginia and maryland. USGS professinal Paper 294-B.
  4. Jeong, J.H., and Yoon, Y.N. (2007). Design Practices in Water Resources, Kumi Press, Seoul, Korea.
  5. Jeong, J.H., Kim, S.W., and Yoon, Y.N. (2006). "Development of an estimation mathod for storage coefficient." Proceedings of the Korea Water Resources Association Conference, KWRA, pp. 135-143.
  6. Johnstone, D., and Cross, W.P. (1949). Elements of Applied Hydrology, Ronald Press, New York.
  7. Jung, S.W. (2005). Development of empirical formulas for the parameter estimation of Clark's watershed flood routing model. Ph.D. dissertation, University of Korea, Seoul, Korea.
  8. Kerby, W.S. (1959). "Time of concentration for overland flow." Civil Engineering, Vol. 29, No. 3, p. 60.
  9. Kim, H.Y. (2011). Examination of runoff characteristics between sub-basin and entire basin's: focusing on the storage coefficient and concentration time. Master dissertation, University of Korea, Seoul, Korea.
  10. Kirpich, P.Z. (1940). "Time of concentration of small agricultural watersheds." Civil Engineering, Vol. 10, No. 6. p. 362.
  11. Laurenson, E.M. (1962). Hydrograph synthesis by runoff routing. Report No. 66. Univ. of New South Wales, Water Res. Lab.
  12. Lee, J.H., and Yoo, C.S. (2011). "Decision of basin representative concentration time and storage coefficient Antecedent Moisture Conditions." Journal of Korean Society of Hazard Mitigation, Kosham, Vol. 11, No. 5, pp. 255-264. https://doi.org/10.9798/KOSHAM.2011.11.5.255
  13. Lee, J.S., Lee, J.J., and Son, K.I. (1997). "A comparative study of conceptual models for rainfall-runoff relationship in small to medium sized watershed-Application to Wi stream basin-." Journal of Korea Water Resources Association, KWRA, Vol. 30, No. 3, pp. 279-291.
  14. Linsley, R.K. (1945). "Discussion of storage and the unit hydrograph by C.O. Clark." Transactions of the American Society of Civil Engineers, Vol. 110, pp. 1452-145.
  15. Morgali, J.R., and Linsley, R.K. (1965). "Computer analysis of overland flow" Journal of Hydraulics Division, Am. Soc. Civ. Eng., Vol. 91, No. HY3, pp. 81-100.
  16. Nash, J.E. (1958). "The form of the instantaneous unit hydrograph." International Association of Hydrological Sciences Publication, Vol. 45, No. 3, pp. 114-121.
  17. Rigon, R., Rodriguez-Iturbe, I., Maritan, A., Giacometti, A., Tarboton, D.G., and Rinaldo, A. (1996). "On Hack's law."Water Resources Research, Vol. 32, No. 11, pp. 3367-3374. https://doi.org/10.1029/96WR02397
  18. Russel, S.O., Kenning, B.F.I., and Sunnell, G.J. (1979). "Estimating design flows for urban drainage." Journal of the Hydraulics Division, Vol. 105, No. 1, pp. 43-52.
  19. Sabol, G.V. (1988). "Clark unit hydrograph and R-parameter estimation." Journal of Hydraulic Engineering, Vol. 114, No. 1, pp. 103-111. https://doi.org/10.1061/(ASCE)0733-9429(1988)114:1(103)
  20. Singh, V.P. (1976). "Derivation of time of concentration." Journal of Hydrology, Vol. 30, pp. 147-165. https://doi.org/10.1016/0022-1694(76)90095-0
  21. Wong, T.S.W. (2002). "Generalized formula for time of travel in rectangular channel." Journal of hydrolorgic engineering, Vol. 7, No. 6, pp. 445-448. https://doi.org/10.1061/(ASCE)1084-0699(2002)7:6(445)
  22. Yoo, C.S. (2009). "A theoretical review of basin storage coefficient and concentration time using the Nash mode." Journal of Korea Water Resources Association, KWRA, Vol. 42, No. 3, pp. 235-246. https://doi.org/10.3741/JKWRA.2009.42.3.235
  23. Yoo, C.S., and Shin, J.W. (2010). "Decision of storage coefficient and concentration time of observed basin using Nash model's structure." Journal of Korea Water Resources Association, KWRA, Vol. 43, No. 6, pp. 559-569. https://doi.org/10.3741/JKWRA.2010.43.6.559
  24. Yoo, D.H., and Jun, W.Y. (2000). "Time of concentration on impervious overland." Journal of Korea Water Resources Association, KWRA, Vol. 33, No. 2, pp. 195-205.
  25. Yoo, D.H., and Lee, M.H. (2000). "Exponential friction factor equations of open channel flow." Journal of Korean Society of Civil Engineers, KSCE, Vol. 20, No. 1-B, pp. 1-10.
  26. Yoo, D.H., Kim, J.H., Lee, M.H., and Lee, S.H. (2011). "The time of concentration considering the rainfall intensity." Journal of Korea W\ater Resources Association, KWRA, Vol. 44, No. 7, pp. 591-599. https://doi.org/10.3741/JKWRA.2011.44.7.591
  27. Yoon, S.Y., and Hong, I.P. (1995). "Improvement of the parameter estimating method for the Clark model." Journal of Korean Society of Civil Engineers, KSCE, Vol. 15, No. 5, pp. 1287-1300.
  28. Yoon, T.H., and Park, J.W. (2002). "Improvement of the storage coefficient estimating method for the clark model." Proceedings of the Korea Water Resources Association Conference, KWRA, pp. 1334-1339.
  29. Yoon, T.H., Kim, S.T., and Park, J.W. (2005). "On redefining of parameters of Clark model." Journal of Korean Society of Civil Engineers, KSCE, Vol. 25, No. 3B, pp. 181-187.
  30. Yoon, Y.N. (2007). Hydrology, Cheongmoongak Press, Seoul, Korea.

Cited by

  1. Parameter Estimation of the Muskingum Channel Flood-Routing Model in Ungauged Channel Reaches vol.22, pp.7, 2017, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001507
  2. The runoff uncertainty caused by the mismatch between the radar rain rate and the topographical information data vol.20, pp.2, 2016, https://doi.org/10.1007/s12205-015-0247-x
  3. Storage Coefficient of Merged Subbasins vol.22, pp.8, 2017, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001524
  4. Hack's Law and Topographical Properties Analysis of Small River Basin vol.16, pp.2, 2016, https://doi.org/10.9798/KOSHAM.2016.16.2.173
  5. Parameter Decision of Muskingum Channel Routing Method Based on the Linear System Assumption vol.46, pp.5, 2013, https://doi.org/10.3741/JKWRA.2013.46.5.449
  6. Evaluation of Error Indices of Radar Rain Rate Targeting Rainfall-Runoff Analysis vol.21, pp.9, 2016, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001393
  7. Effect of Estimation for Time of Concentration on the Design Flood vol.16, pp.1, 2014, https://doi.org/10.17663/JWR.2014.16.1.125
  8. Bias from Rainfall Spatial Distribution in the Application of Areal Reduction Factor vol.22, pp.12, 2018, https://doi.org/10.1007/s12205-017-1773-5
  9. Theoretical evaluation of concentration time and storage coefficient with their application to major dam basins in Korea vol.19, pp.2, 2018, https://doi.org/10.2166/ws.2018.156