DOI QR코드

DOI QR Code

Group Decision Making Approach to Flood Vulnerability Assessment

홍수 취약성 평가를 위한 그룹 의사결정 접근법

  • Kim, Yeong Kyu (Korea Research Institute of Climate Countermeasure Strategies) ;
  • Chung, Eun-Sung (Department of Civil Engineering, Seoul National University of Science and Technology) ;
  • Lee, Kil Seong (Department of Civil & Environmental Engineering, Seoul National University) ;
  • Kim, Yeonjoo (Korea Environment Institute)
  • 김영규 (한국기후변화대응전략연구소) ;
  • 정은성 (서울과학기술대학교 건설시스템디자인학과) ;
  • 이길성 (서울대학교 건설환경공학부) ;
  • 김연주 (한국환경정책.평가연구원)
  • Received : 2012.05.03
  • Accepted : 2012.09.27
  • Published : 2013.02.28

Abstract

Increasing complexity of the basin environments makes it difficult for single decision maker to consider all relevant aspects of problem, and thus the uncertainty of decision making grows. This study attempts to develop an approach to quantify the spatial flood vulnerability of South Korea. Fuzzy TOPSIS is used to calculate individual preference by each group and then three GDM techniques (Borda count method, Condorcet method, and Copeland method) are used to integrate the individual preference. Finally, rankings from Fuzzy TOPSIS, TOPSIS, and GDM are compared with Spearman rank correlation, Kendall rank correlation, and Emond & Mason rank correlation. As a result, the rankings of some areas are dramatically changed by the use of GDM techniques. Because GDM technique in regional vulnerability assessment may cause a significant change in priorities, the model presented in this study should be considered for objective flood vulnerability assessment.

유역 환경에 대한 복잡성의 증가는 단일 의사결정자들이 의사결정문제의 모든 부분을 고려하는 것을 점점 더 불가능하게 만들기 때문에 불확실성은 더욱 증가하게 된다. 따라서 본 연구는 그룹의사결정기법을 사용하여 우리나라 공간적인 홍수 취약성을 정량화하는 접근법을 제시하였다. 개인의 선호도를 분석하기위해 Fuzzy TOPSIS를 사용하였고 개인선호도의 통합을 위해 Borda count, Condorcet 그리고 Copeland 방법을 사용하였다. 마지막으로 도출된 결과를 Fuzzy TOPSIS 및 TOPSIS의 결과와 비교하였고 스피어만 순위상관계수와 켄달의 순위상관계수, Emond와 Mason이 제시한 순위상관분석을 이용하여 순위의 일치성을 검토하였다. 그 결과 일부 지역의 취약성 순위가 큰 폭으로 역전되는 현상을 보였다. 그룹의사결정 개념을 반영하여 지역별 취약성을 산정할 경우 우선순위의 변동이 클 수 있으므로 홍수 취약성 산정시 본 연구에서 제시된 모델을 고려할 필요가 있다.

Keywords

References

  1. Armstrong, R.D., Cook, W.D., and Seiford, L.M. (1982). "Priority ranking and consensus formation: the case of ties." Management Science, Vol. 28, No. 6, pp. 638- 645. https://doi.org/10.1287/mnsc.28.6.638
  2. Cho, N.W, Kim, J.G., and Kim, S.K. (2006). "An Interactive Multi-criteria Group Decision Making with the Minimum Distance Measure." Journal of the Korean Institute of Industrial Engineers, Vol. 32, No. 1, pp. 483-486.
  3. Chung, E.S., and Lee, K.S. (2007). "Identifying Spatial Hazard Ranking Using Multicriteria Decision Making Techniques." Journal of Korean Association of Hydrological Sciences, Vol. 40, No. 12, pp. 969-983. https://doi.org/10.3741/JKWRA.2007.40.12.969
  4. Chung, E.S., Lee, K.S., and Park, K.S. (2008). "Development of Alternative Evaluation Index Using Multicriteria Decision Making Techniques." Journal of Korean Association of Hydrological Sciences, Vol. 41, No. 1, pp. 87-100. https://doi.org/10.3741/JKWRA.2008.41.1.087
  5. Cook, W.D. (2006). "Distance-based and ad hoc consensus models in ordinal preference ranking." European Journal of Operational Research, Vol. 172, No. 2, pp. 369-385. https://doi.org/10.1016/j.ejor.2005.03.048
  6. Copeland, A.H. (1951). A reasonable social welfare function. Seminar on Applications of Mathematics to Social Sciences, University of Michigan, Ann Arbor
  7. Emond, E.J., and Mason, D. (2002). "A new rank correlation coefficient with application to the consensus ranking problem." Journal of Multi Criteria Decision Analysis, Vol. 11, No. 1, pp. 17-28. https://doi.org/10.1002/mcda.313
  8. Forman, E., and Peniwati, K. (1998). "Aggregation of individual judgments and priorities with the analytic hierarchy process." European Journal of Operational Research, Vol. 108, No. 1, pp. 165-169. https://doi.org/10.1016/S0377-2217(97)00244-0
  9. Friedman, M. (1957). A theory of consumption function, Princeton University Press, Princeton, N. J.
  10. Gomes L., Araya, M., and Carignano, C. (2004). Decision making in complex scenarios, Sao Paulo, Brazil: Ed. Pioneria.
  11. Huang, Y.S., and Li, W.H. (2010). "A study on aggregation of TOPSIS ideal solutions for group decisionmaking." Group Decision and Negotiation, Published Online: 01 December 2010, pp. 1-13,
  12. Jun, K. S., Chung, E. S., Sung, J. Y., and Lee, K. S. (2011). "Development of spatial water resources vulnerability index considering climate change impacts." Science of the Total Environment, Vol. 409, pp. 5228-5242. https://doi.org/10.1016/j.scitotenv.2011.08.027
  13. Jung, I.W., Bae, D.H., and Kim, G.S. (2011). "Recent trend of mean and extreme precipitation in Korea." International Journal of Climatology, Vol. 31, Issue 3, pp. 359-370. https://doi.org/10.1002/joc.2068
  14. Kendall, M. (1948). Rank correlation methods. Charles Friffin and Company Limited, London.
  15. Kim, Y.K., Yoo, J.A., and Chung, E.S. (2012a). "Water Management Vulnerability Assessment Considering Climate Change in Korea." Climate Change Research, Vol. 3, No. 1, pp. 1-12. https://doi.org/10.1038/nclimate1802
  16. Kim, Y.K., Chung, E.S., and Lee, K.S. (2012b). "Fuzzy TOPSIS Approach to Flood Vulnerability Assessment in Korea." Journal of Korean Association of Hydrological Sciences, Vol. 45, No. 9, pp. 901-913.
  17. Ko, J.K., and Kim, H.S. (2009). A Study on Vulnerability Assessment to Climate Change in Gyeonggi-do. Gyeinggi Research Institute, Research Policy, 2009- 37, pp. 67-92.
  18. Lin, Y.H., Lee, P.C., Chang, T.P., and Ting, H.I. (2008). "Multi-attribute group decision making model under the condition of uncertain information." Automation in Construction, Vol. 17, pp. 792-797. https://doi.org/10.1016/j.autcon.2008.02.011
  19. McLean, I. (1990). "The borda and condorcet principles: Three medieval applications." Social Choice and Welfare, Vol. 7, No. 2, pp. 99-108. https://doi.org/10.1007/BF01560577
  20. Mintzberg, H. (1975). The nature of managerial work. Harper & Row, New York.
  21. Morais, D.C., and Almeida, A.T. (2007). "Group decisionmaking for leakage management strategy of water network." Resources, Conservation and Recycling, Vol. 52, Issue 2, pp. 441-459. https://doi.org/10.1016/j.resconrec.2007.06.008
  22. Morais, D.C., and Almeida, A.T. (2010). "Water network rehabilitation; a group decision-making approach." Water SA, Vol. 35, No. 4, pp. 487-493.
  23. Morais, D.C., and Almeida, A.T. (2012). "Group decision making on water resources based on analysis of individual rankings." Omega, Vol. 40, Issue 1, pp. 42- 52. https://doi.org/10.1016/j.omega.2011.03.005
  24. Shih, H.S., Shyur, H.J., and Lee, E.S. (2007) "An extension of TOPSIS for group decision making." Mathematical and Computer Modelling, Vol. 45, pp. 801-813. https://doi.org/10.1016/j.mcm.2006.03.023
  25. Simon, H.A. (1957). Models of man, Wiley, New York.
  26. Smith, J.H. (1973). "Aggregation of preferences with variable electorate." Econometrica, Vol. 41, No. 6, pp. 1027-1041. https://doi.org/10.2307/1914033
  27. Son, M.W., Sung, J.Y., Chung, E.S., and Jun, K.S. (2011). "Development of Flood Vulnerability Index Considering Climate Change." Journal of Korean Association of Hydrological Sciences, Vol. 44, No. 3, pp. 231- 248.
  28. Srdjevic, B. (2007). "Linking analytic hierarchy process and social choice methods to support group decisionmaking in water management." Decision Support Systems, Vol. 42, Issue 4, pp. 2261-2273. https://doi.org/10.1016/j.dss.2006.08.001
  29. William, G.L. (1978). "Strategic voting and the borda method." Public Choice, Vol. 33, No. 1, pp. 85-90.
  30. Ye, F., and Li, Y.N. (2009). "Group multi-attribute decision model to partner selection in the formation of virtual enterprise under incomplete information." Expert Systems with Applications, Vol. 36, pp. 9350- 9357. https://doi.org/10.1016/j.eswa.2009.01.015

Cited by

  1. Development and Application of Indicators for Water Management for River Basin - Focusing on Water use and Flood vol.16, pp.2, 2016, https://doi.org/10.9798/KOSHAM.2016.16.2.483