DOI QR코드

DOI QR Code

Optical Monitoring of Tumors in BALB/c Nude Mice Using Optical Coherence Tomography

  • Song, Hyun-Woo (Bio-health IT Convergence Research Department, Electronics and Telecommunications Research Institute) ;
  • Lee, Sang-Won (Bio-health IT Convergence Research Department, Electronics and Telecommunications Research Institute) ;
  • Jung, Myung-Hwan (Proton Engineering Frontier Project, Korea Atomic Energy Research Institute) ;
  • Kim, Kye Ryung (Proton Engineering Frontier Project, Korea Atomic Energy Research Institute) ;
  • Yang, Seungkyoung (Bio-health IT Convergence Research Department, Electronics and Telecommunications Research Institute) ;
  • Park, Jeong Won (Bio-health IT Convergence Research Department, Electronics and Telecommunications Research Institute) ;
  • Jeong, Min-Sook (Bio-health IT Convergence Research Department, Electronics and Telecommunications Research Institute) ;
  • Jung, Moon Youn (Bio-health IT Convergence Research Department, Electronics and Telecommunications Research Institute) ;
  • Kim, Seunghwan (Bio-health IT Convergence Research Department, Electronics and Telecommunications Research Institute)
  • Received : 2012.10.22
  • Accepted : 2013.01.18
  • Published : 2013.02.25

Abstract

We report a method for optical monitoring of tumors in an animal model using optical coherence tomography (OCT). In a spectral domain OCT system, a superluminescent diode light source with a full width of 66 nm at half maximum and peak wavelength of 950 nm was used to take images having an axial resolution of 6.8 ${\mu}m$. Cancer cells of PC-3 were cultured and inoculated into the hypodermis of auricle tissues in BALB/c nude mice. We observed tumor formation and growth at the injection region of cancer cells in vivo and obtained the images of tumor mass center and sparse circumferences. On the $5^{th}$ day from an inoculation of cancer cells, histological images of the tumor region using cross-sectional slicing and dye staining of specimens were taken in order to confirm the correlation with the high resolution OCT images. The OCT image of tumor mass compared with normal tissues was analyzed using its A-scan data so as to obtain a tissue attenuation rate which increases according to tumor growth.

Keywords

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991). https://doi.org/10.1126/science.1957169
  2. W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh resolution ophthalmic optical coherence tomography," Nature Medicine 7, 502-507 (2001). https://doi.org/10.1038/86589
  3. J. L. Marti, L. T. Dauer, M. Stempel, S. Patil, J. B. Kaplan, and L. L. Montgomery, "Cumulative imaging radiation exposure following breast-conservation therapy," Annals of Surgical Oncology 18, 104-108 (2011). https://doi.org/10.1245/s10434-010-1279-6
  4. H. Jeong, J.-E. Rah, U.-J. Hwang, S. H. Yoo, B. J. Min, S.-Y. Lee, M. Yoon, D. H. Shin, S. Y. Park, S. B. Lee, and J.-Y. Kim, "Estimation of the secondary cancer risk induced by diagnostic imaging radiation during proton therapy," Journal of Radiological Protection 31, 477-487 (2011). https://doi.org/10.1088/0952-4746/31/4/007
  5. A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, "In vivo optical coherence tomography," American Journal of Ophthalmology 116, 113-114 (1993). https://doi.org/10.1016/S0002-9394(14)71762-3
  6. A. A. Moayed, S. Hariri, E. S. Song, V. Choh, and K. Bizheva, "In vivo volumetric imaging of chicken retina with ultrahigh-resolution spectral domain optical coherence tomography," Biomedical Optics Express 2, 1268-1274 (2011). https://doi.org/10.1364/BOE.2.001268
  7. S.-W. Lee, H.-W. Song, M.-Y. Jung, and S. Kim, "Wide tuning range wavelength-swept laser with a single SOA at 1020 nm for ultrahigh resolution Fourier-domain optical coherence tomography," Opt. Express 19, 21227-21237 (2011). https://doi.org/10.1364/OE.19.021227
  8. S.-W. Lee, H.-W. Song, B.-K. Kim, M.-Y. Jung, S.-H. Kim, J. D. Cho, and C.-S. Kim, "Fourier domain optical coherence tomography for retinal imaging with 800 nm swept source: real time resampling in k-domain," J. Opt. Soc. Korea 15, 293-299 (2011). https://doi.org/10.3807/JOSK.2011.15.3.293
  9. T. E. J. Fabritius, S. Makita, M. Yamanari, R. A. Myllyla, and Y. Yasuno, "Complex conjugate resolved retinal imaging by one-micrometer spectral domain optical coherence tomography using an electro-optical phase modulator," J. Opt. Soc. Korea 15, 111-117 (2011). https://doi.org/10.3807/JOSK.2011.15.2.111
  10. M. Ruggeri, H. Wehbe, S. Jiao, G. Gregori, M. E. Jockoich, A. Hackam, Y. Duan, and C. A. Puliafito, "In vivo three dimensional high resolution imaging of rodent retina with spectral domain optical coherence tomography," Investigative Ophthalmology & Visual Science 48, 1808-1814 (2007). https://doi.org/10.1167/iovs.06-0815
  11. M. Ruggeri, G. Tsechpenakies, S. Jiao, M. E. Jockoich, C. Cebulla, E. Hernandez, T. G. Murray, and C. A. Puliafito, "Retinal tumor imaging and volume quantification in mouse model using spectral domain optical coherence tomography," Opt. Express 17, 4074-4083 (2009). https://doi.org/10.1364/OE.17.004074
  12. B. R. Smith, Z. Cheng, A. De, J. Rosenberg, and S. S. Gambhir, "Dynamic visualization of RGD quantum dot binding to tumor neovasculature and extravasation in multiple living mouse models using intravital microscopy," Small 6, 2222- 2229 (2010). https://doi.org/10.1002/smll.201001022
  13. J.-T. Oh, S.-W. Lee, Y.-S. Kim, K.-B. Suhr, and B.-M. Kim, "Quantification of the wound healing using polarizationsensitive optical coherence tomography," Journal of Biomedical Optics 11, 041124 (2006).
  14. T. Zhang, J.-L. Li, X.-C. Ma, J. Xin, and Z.-H. Tu, "Reliability of phototoxic tests of fluoroquinolones in vitro," Acta Pharmacological Sinica 24, 453-459 (2003).
  15. R. A. McLaughlin, L. Scolaro, P. Robbins, C. Saunders, S. L. Jacques, and D. D. Sampson, "Parametric imaging of cancer with optical coherence tomography," Journal of Biomedical Optics 15, 046029-1-046029-4 (2010). https://doi.org/10.1117/1.3479931
  16. Z. Chen, T. E. Milner, D. Dave, and J. S. Nelson, "Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media," Opt. Lett. 22, 64-66 (1997). https://doi.org/10.1364/OL.22.000064
  17. Z. Chen, T. E. Milner, S. Srinivas, X. Wang, A. Malekafzali, M. J. C. van Gemert, and J. S. Nelson, "Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography," Opt. Lett. 22, 1119-1121 (1997). https://doi.org/10.1364/OL.22.001119
  18. Z. Chen, Y. Zhao, S. M. Srinivas, J. S. Nelson, N. Prakash, and R. D. Frostig, "Optical Doppler tomography," IEEE J. Select. Topics Quantum Electron. 5, 1134-1142 (1999). https://doi.org/10.1109/2944.796340
  19. R. A. Weinberg, The Biology of Cancer (Garland Science, NY, USA, 2007).
  20. J. Folkman, "Angiogenesis in cancer, vascular, rheumatoid and other disease," Nature Medicine 1, 27-31 (1995). https://doi.org/10.1038/nm0195-27
  21. S. L. Jacques and D. J. McAuliffe, "The melanosome: threshold temperature for explosive vaporization and internal absorption coefficient during pulsed laser irradiation," Photochemistry and Photobiology 53, 769-775 (1991). https://doi.org/10.1111/j.1751-1097.1991.tb09891.x
  22. W. F. Cheong, S. A. Prahl, and A. J. Welch, "A review of the optical properties of biological tissues," IEEE J. Quantum Electron. 26, 2166-2175 (1990). https://doi.org/10.1109/3.64354
  23. M. Meinke, G. Muller, J. Helfmann, and M. Friebel, "Empirical model functions to calculate hematocrit-dependent optical properties of human blood," Appl. Opt. 46, 1742-1753 (2007). https://doi.org/10.1364/AO.46.001742

Cited by

  1. Photodynamic therapy monitoring with optical coherence angiography vol.7, 2017, https://doi.org/10.1038/srep41506