DOI QR코드

DOI QR Code

Numerical Study of Enhanced Performance in InGaN Light-Emitting Diodes with Graded-composition AlGaInN Barriers

  • Kim, Su Jin (School of Electronics and Electrical Engineering, Korea University) ;
  • Kim, Tae Geun (School of Electronics and Electrical Engineering, Korea University)
  • 투고 : 2012.10.30
  • 심사 : 2013.01.03
  • 발행 : 2013.02.25

초록

In this paper, we report the effect of GaN/graded-composition AlGaInN/GaN quantum barriers in active regions on the electrical and optical properties of GaN-based vertical light emitting diodes (VLEDs). By modifying the aluminum composition profile within the AlGaInN quantum barrier, we have achieved improvements in the output power and the internal quantum efficiency (IQE) as compared to VLEDs using conventional GaN barriers. The forward voltages at 350 mA were calculated to be 3.5 and 4.0 V for VLEDs with GaN/graded-composition AlGaInN/GaN barriers and GaN barriers, respectively. The light-output power and IQE of VLEDs with GaN/graded-composition AlGaInN/GaN barriers were also increased by 4.3% and 9.51%, respectively, as compared to those with GaN barriers.

키워드

참고문헌

  1. F. F. Jobsis, M. R. Krames, O. B. Shchekin, R. Mueller- Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, "Status and future of high-power light-emitting diodes for solid-state lighting," IEEE J. Display Technol. 3, 160-175 (2007). https://doi.org/10.1109/JDT.2007.895339
  2. D. J. Chae, D. Y. Kim, D. H. Kim, S. J. Kim, and T. G. Kim, "Optical properties of NiO/Al based reflector for high-power ultraviolet light-emitting diodes," J. Korean Phys. Soc. 58, 990-993 (2011). https://doi.org/10.3938/jkps.58.990
  3. J. W. Yang, J. I. Sim, H. M. An, and T. G. Kim, "Fabrication of nanometer-scale pillar structures using nanosphere lithography," J. Korean Phys. Soc. 58, 994-997 (2011). https://doi.org/10.3938/jkps.58.994
  4. Y. C. Shin, D. H. Kim, E. H. Kim, J. M. Park, K. M. Ho, K. Constant, J. H. Choe Park, Q. H. Park, H. Y. Ryu, J. H. Baek, T. Jung, and T. G. Kim, "High efficiency GaN light-emitting diodes with two dimensional photonic crystal structures of deep-hole square lattices," IEEE J. Quantum Electron. 46, 116-120 (2010). https://doi.org/10.1109/JQE.2009.2030150
  5. S. J. Kim, T. Y. Nam, and T. G. Kim, "Low-resistance nonalloyed Ti/Al ohmic contacts to N-face n-type GaN with $O_{2}$ plasma treatment," IEEE Electron Device Lett. 32, 149-151 (2011). https://doi.org/10.1109/LED.2010.2093556
  6. D. H. Kim, S. J. Kim, S. H. Kim, T. Jeong, S.-M. Hwang, and T. G. Kim, "Improved device performance in nonpolar a-plane GaN LEDs using an Ni/Al/Ni/Au n-type ohmic contact," Phys. Stat. Sol. (RRL) 5, 274-276 (2011). https://doi.org/10.1002/pssr.201105265
  7. C. G. Son, J. H. Yi, J. S. Gwag, J. H. Kwon, and G. J. Park, "Improvement of color and luminance uniformity of the edge-lit backlight using the RGB LEDs," J. Opt. Soc. Korea 15, 272-277 (2011). https://doi.org/10.3807/JOSK.2011.15.3.272
  8. Y.-L. Li, Y.-R. Huang, and Y.-H. Lai, "Efficiency droop behaviors of InGaN/GaN multiple-quantum-well light-emitting diodes with varying quantum well thickness," Appl. Phys. Lett. 91, 181113 (2007).
  9. L.-B. Chang, M.-J. Lai, R.-M. Lin, and C.-H. Huang, "Effect of electron leakage on efficiency droop in wide-well InGaN-based light-emitting diodes," Appl. Phys. Express 4, 012106 (2011). https://doi.org/10.1143/APEX.4.012106
  10. K.-S. Kim and J. C. Yi, "Epitaxial structure optimization for high brightness InGaN light emitting diodes by using a self-consistent finite element method," J. Opt. Soc. Korea 16, 292-298 (2012). https://doi.org/10.3807/JOSK.2012.16.3.292
  11. Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, "Auger recombination in InGaN measured by photoluminescence," Appl. Phys. Lett. 91, 141101 (2007).
  12. A. A. Efremov, N. I. Bochkareva, R. I. Gorbunov, D. A. Lavrinovich, Y. T. Rebane, D. V. Tarkhin, and Y. G. Shreter, "Effect of the joule heating on the quantum efficiency and choice of thermal conditions for high-power blue InGaN/GaN LEDs," Semiconductors 40, 605-610 (2006). https://doi.org/10.1134/S1063782606050162
  13. M. F. Schubert, S. Chhajed, J. K. Kim, and E. F. Schubert, D. D. Koleske, M. H. Crawford, S. R. Lee, A. J. Fischer, R. G. Thale, and M. A. Banas, "Effect of dislocation density on efficiency droop in GaInN/GaN light-emitting diodes," Appl. Phys. Lett. 91, 231114 (2007) https://doi.org/10.1063/1.2822442
  14. A. David, M. J. Grundmann, J. F. Kaeding, N. F. Gardner, T. G. Mihopoulos, and M. R. Krames, "Carrier distribution in (0001) InGaN/GaN multiple quantum well light-emitting diodes," Appl. Phys. Lett. 92, 053502 (2008). https://doi.org/10.1063/1.2839305
  15. M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, "Origin of efficiency droop in GaN-based light-emitting diodes," Appl. Phys. Lett. 91, 183507 (2007). https://doi.org/10.1063/1.2800290
  16. J. S. Cabalu, C. Thomidis, T. D. Moustakas, S. Riyopoulos, L. Zhou, and D. J. Smith, "Enhanced internal quantum efficiency and light extraction efficiency from textured GaN/AlGaN quantum wells grown by molecular beam epitaxy," J. Appl. Phys. 99, 064904 (2006). https://doi.org/10.1063/1.2179120
  17. S.-H. Park and S.-L. Chuang, "Piezoelectric effects on electrical and optical properties of wurtzite GaN/AlGaN quantum well lasers," Appl. Phys. Lett. 72, 3103 (1998). https://doi.org/10.1063/1.121560
  18. A. Chitnis, J. P. Zhang, V. Adivarahan, M. Shatalov, S. Wu, R. Pachipulusu, V. Mandavilli, and M. A. Khan, "Improved performance of 325-nm emission AlGaN ultraviolet light-emitting diodes," Appl. Phys. Lett. 82, 2565 (2003). https://doi.org/10.1063/1.1569040
  19. R. C. Tu, C. J. Tun, S. M. Pan, C. C. Chuo, J. K. Sheu, C. E. Tsai, and G. C. Chi, "Improvement of nearultraviolet InGaN-GaN light-emitting diodes with an AlGaN electron-blocking layer grown at low temperature," IEEE Photon. Technol. Lett. 15, 1342-1344 (2003). https://doi.org/10.1109/LPT.2003.818240
  20. L. Zhang, K. Ding, N. X. Liu, T. B. Wei, X. L. Ji, P. Ma, J. C. Yan, J. X. Wang, Y. P. Zeng, and J. M. Li, "Theoretical study of polarization-doped GaN-based light-emitting diodes," Appl. Phys. Lett. 98, 101110 (2010).
  21. Y. K. Kuo, J. Y. Chang, and M. C. Tsai, "Enhancement in hole-injection efficiency of blue InGaN light-emitting diodes from reduced polarization by some specific designs for the electron blocking layer," Opt. Lett. 35, 3285-3287 (2010). https://doi.org/10.1364/OL.35.003285
  22. S. H. Yen, M. C. Tsai, M. L. Tsai, Y. J. Shen, T. C. Hsu, and Y. K. Kuo, "Effect of N-type AlGaN layer on carrier transportation and efficiency droop of blue InGaN light-emitting diodes," IEEE Photon. Technol. Lett. 21, 975-977 (2009). https://doi.org/10.1109/LPT.2009.2021155
  23. Y.-K. Kuo, J.-Y. Chang, M.-C. Tsai, and S.-H. Yen, "Advantages of blue InGaN multiple-quantum light-emitting diodes with InGaN barriers," Appl. Phys. Lett. 95, 011116 (2009). https://doi.org/10.1063/1.3176406
  24. Y.-K. Fu, R.-H. Jiang, Y.-H. Lu, B.-C. Chen, R. Xuan, Y.-H. Fang, C.-F. Lin, Y.-K. Su, and J.-F. Chen, "The effect of trimethylgallium flows in the AlInGaN barrier onoptoelectronic characteristics of near ultraviolet light-emitting diodes grown by atmospheric pressure metalorganic vapor phase epitaxy," Appl. Phys. Lett. 98, 121115 (2011). https://doi.org/10.1063/1.3571440
  25. S. Choi, H. J. Kim, S. S. Kim, J. Liu, J. Kim, J. H. Ryou, R. D. Dupuis, A. M. Fischer, and F. A. Ponce, "Improvement of peak quantum efficiency and efficiency droop in III-nitride visible light-emitting diodes with an InAlN electron-blocking layer," Appl. Phys. Lett. 96, 221105 (2010). https://doi.org/10.1063/1.3441373
  26. Y. K. Kuo, M. C. Tsai, and S. H. Yen, "Numerical simulation of blue InGaN light-emitting diodes with polarizationmatched AlGaInN electron-blocking layer and barrier layer," Opt. Commun. 282, 4252-4255 (2009). https://doi.org/10.1016/j.optcom.2009.07.036
  27. SiLENSe and SpeCLED by STR Group Inc., St.-Petersburg, Russia, http://www.str-soft.com.
  28. I. Vurgaftman and J. R. Meyer, "Band parameters for nitrogen-containing semiconductors," J. Appl. Phys. 94, 3675 (2003). https://doi.org/10.1063/1.1600519
  29. M. Kurata, Numerical Analysis for Semiconductor Devices (D. C. Heath & Co., Lexington, MA, USA, 1982).
  30. Y. C. Shen, G. O. Müeller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, "Auger recombination in InGaN measured by photoluminescence," Appl. Phys. Lett. 91, 141101 (2007). https://doi.org/10.1063/1.2785135

피인용 문헌

  1. Out-of-Band Measurement of LED-based Solar Blind UV Filters vol.18, pp.3, 2014, https://doi.org/10.3807/JOSK.2014.18.3.244