DOI QR코드

DOI QR Code

High Power Continuous-Wave and Graphene Q-switched Operation of Er:YAG Ceramic Lasers at ~1.6 ㎛

  • Wang, Yong (Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Fudan University) ;
  • Chen, Hao (Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Fudan University) ;
  • Shen, Deyuan (Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Fudan University) ;
  • Zhang, Jian (School of Physical Science and Electronic Engineering, Jiangsu Normal University) ;
  • Tang, Dingyuan (School of Physical Science and Electronic Engineering, Jiangsu Normal University)
  • 투고 : 2012.10.30
  • 심사 : 2013.01.10
  • 발행 : 2013.02.25

초록

We report on high-power continuous-wave operations of an Er:YAG ceramic laser in-band pumped by a cladding-pumped Er,Yb fiber laser at 1532 nm. With an output coupler of 10% transmission, the ceramic laser yielded 16.7 W of continuous-wave output at 1645 nm for 28.8 W of incident pump power, corresponding to a slope efficiency of 61.0% with respect to the incident pump power. The lasing wavelength switched to 1617 nm when output couplers of > 20% transmission were used. Up to 16.2 W of 1617 nm output was generated for 33.0 W of incident pump power, corresponding to a slope efficiency of 51.8%. Graphene Q-switched operation of Er:YAG cermic laser at 1645 nm was also demonstrated with stable pulses of 30-74 kHz repetition rates and 1.5-6.4 ${\mu}s$ pulse widths.

키워드

참고문헌

  1. A. Ikesue and Y. L. Aung, "Ceramic laser materials," Nat. Photon. 2, 721-727 (2008). https://doi.org/10.1038/nphoton.2008.243
  2. J. Wisdom, M. Digonnet, and R. L. Byer, "Ceramic lasers: ready for action," Photonics Spectra 38, 2-8 (2004).
  3. T. Taira, "$RE^{3+}$-doped YAG ceramic lasers," IEEE J. Select. Topics Quantum Electron. 13, 798-809 (2007). https://doi.org/10.1109/JSTQE.2007.897174
  4. A. Pirri, D. Alderighi, G. Toci, and M. Vannini, "Highefficiency, high-power and low threshold $Yb^{3+}$:YAG ceramic laser," Opt. Express 17, 23344-23349 (2009). https://doi.org/10.1364/OE.17.023344
  5. M. Dubinskii, N. Ter-Gabrielyan, L. D. Merkle, and G. A. Newburgh, "First laser performance of $Er^{3+}$-doped scandia ($Sc_{2}O_{3}$) ceramic," Proc. SPIE 6952, 69520O1-9 (2008). https://doi.org/10.1117/12.800996
  6. N. Ter-Gabrielyan, L. D. Merkle, G. A. Newburgh, and M. Dubinskii, "Resonantly pumped $Er^{3+}$:$Y_{2}O_{3}$ ceramic laser for remote $CO_{2}$ monitoring," Laser Phys. 19, 867-869 (2009). https://doi.org/10.1134/S1054660X09040458
  7. N. Ter-Gabrielyan, L. D. Merkle, E. R. Kupp, G. L. Messing, and M. Dubinskii, "Efficient resonantly pumped tape cast composite ceramic Er:YAG laser at 1645 nm," Opt. Lett. 35, 922-924 (2010). https://doi.org/10.1364/OL.35.000922
  8. D. Y. Shen, H. Chen, X. P. Qin, J. Zhang, D. Y. Tang, X. F. Yang, and T. Zhao, "Polycrystalline ceramic Er:YAG laser in-band pumped by a high-power Er, Yb fiber laser at 1532 nm," Appl. Phys. Express 4, 052701-1-052701-3 (2011). https://doi.org/10.1143/APEX.4.052701
  9. X. F. Yang, D. Y. Shen, T. Zhao, H. Chen, J. Zhou, J. Li, H. M. Kou, and Y. B. Pan, "In-band pumped Er:YAG ceramic laser with 11 W of output power at 1645 nm," Laser Phys. 21, 1013-1016 (2011). https://doi.org/10.1134/S1054660X1111034X
  10. C. Zhang, D. Y. Shen, Y. Wang, L. J. Qian, J. Zhang, X. P. Qin, D. Y. Tang, X. F. Yang, and T. Zhao, "Highpower polycrystalline Er:YAG ceramic laser at 1617 nm,"Opt. Lett. 36, 4767-4769 (2011). https://doi.org/10.1364/OL.36.004767
  11. Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, "Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers," Adv. Funct. Mater. 19, 3077-3083 (2009). https://doi.org/10.1002/adfm.200901007
  12. W. D. Tan, C. Y. Su, R. J. Knize, G. Q. Xie, L. J. Li, and D. Y. Tang, "Mode-locking of ceramic Nd:yttrium aluminum garnet with graphene as a saturable absorber," Appl. Phys. Lett. 96, 031106-1-031106-3 (2010). https://doi.org/10.1063/1.3292018
  13. Q. Wang, H. Teng, Y. W. Zou, Z. G. Zhang, D. H. Li, R. Wang, C. Q. Gao, J. J. Lin, L. W. Guo, and Z. Y. Wei, "Graphene on SiC as a Q-switcher for a 2 $\mu m$ laser," Opt. Lett. 37, 395-397 (2012). https://doi.org/10.1364/OL.37.000395
  14. J. Ma, G. Q. Xie, P. Lv, W. L. Gao, P. Yuan, L. J. Qian, H. H. Yu, H. J. Zhang, J. Y. Wang, and D. Y. Tang, "Graphene mode-locked femtosecond laser at 2 $\mu m$ wavelength," Opt. Lett. 37, 2085-2087 (2012). https://doi.org/10.1364/OL.37.002085
  15. C. Q. Gao, R. Wang, L. N. Zhu, M. W. Gao, Q. Wang, Z. G. Zhang, Z. Y. Wei, J. J. Lin, and L. W. Guo, "Resonantly pumped 1.645 $\mu m$ high repetition rate Er:YAG laser Q-switched by a graphene as a saturable absorber," Opt. Lett. 37, 632-634 (2012). https://doi.org/10.1364/OL.37.000632
  16. H. Yang, J. Zhang, X. P. Qin, D. W. Luo, J. Ma, D. Y. Tang, H. Chen, D. Y. Shen, and Q. T. Zhang, "Polycrystalline Ho:YAG transparent ceramics for eye-safe solid-state laser applications," J. Am. Ceram. Soc. 95, 52-55 (2012). https://doi.org/10.1111/j.1551-2916.2011.04953.x
  17. S. D. Setzler, M. P. Francis, Y. E. Young, J. R. Konves, and E. P. Chicklis, "Resonantly pumped eyesafe Erbium lasers," IEEE J. Select. Topics Quantum Electron. 11, 645-657 (2005). https://doi.org/10.1109/JSTQE.2005.850249

피인용 문헌

  1. Resonantly pumped Q-switched Er:YAG ceramic laser at 1645 nm vol.22, pp.20, 2014, https://doi.org/10.1364/OE.22.024004
  2. Saturable optical absorption in MoS2 nano-sheet optically deposited on the optical fiber facet vol.335, 2015, https://doi.org/10.1016/j.optcom.2014.09.038
  3. All-fiber thulium/holmium-doped mode-locked laser by tungsten disulfide saturable absorber vol.27, pp.1, 2017, https://doi.org/10.1088/1555-6611/27/1/015102
  4. A high-energy passively Q-switched Yb-doped fiber laser based on WS2 and Bi2Te3 saturable absorbers vol.19, pp.9, 2017, https://doi.org/10.1088/2040-8986/aa7f5f
  5. Continuous-wave and actively Q-switched resonantly dual-end-pumped Er : YAG ceramic laser emitting at 1.6 μm vol.45, pp.12, 2015, https://doi.org/10.1070/QE2015v045n12ABEH015662
  6. Magnesium diboride (MgB_2) as a saturable absorber for a ytterbium-doped Q-switched fiber laser vol.56, pp.27, 2017, https://doi.org/10.1364/AO.56.007611
  7. Resonantly pumped Er:YAG laser Q-switched by topological insulator nanosheets at 1617 nm vol.71, 2017, https://doi.org/10.1016/j.optmat.2016.05.047
  8. All-fiber Er-doped Q-Switched laser based on Tungsten Disulfide saturable absorber vol.5, pp.2, 2015, https://doi.org/10.1364/OME.5.000373