DOI QR코드

DOI QR Code

Mechanism of Strength Development in Ultra High Strength Concrete Using the Electric Arc Furnace Oxidizing Slag as Fine Aggregate

초고강도 콘크리트에서 전기로 산화 슬래그 잔골재 사용에 의한 강도 증진 기구

  • Lee, Seung-Heun (Dept. of Materials Science and Engineering, Kunsan National University) ;
  • Lim, Doo-Sub (Dept. of Materials Science and Engineering, Kunsan National University) ;
  • Lee, Seung-Hoon (Samsung C&T Corporation Engineering & Construction Group) ;
  • Lee, Joo-Ha (Dept. of Civil Engineering, The University of Suwon)
  • Received : 2012.01.30
  • Accepted : 2012.09.13
  • Published : 2013.02.28

Abstract

In ultra high strength concrete, when electric arc furnace oxidizing slag is substituted for sea sand as fine aggregate, compressive strength was improved about 15 MPa. To figure out the cause of the improvement in compressive strength, this study considered the dissolution characteristics of Ca component in fine aggregate and examined the microstructure, porosity, microhardness, and Ca/Si mole ratio on the interface of fine aggregate and paste. And to examine the mechanism of strength improvement resulted from the shape of fine aggregate, this study measured the surface roughness of fine aggregate with AFM. According to the result of this experiment, the mechanisms of strength improvement in ultra high strength concrete resulted from the use of electric arc furnace oxidizing slag as fine aggregate can be divided into chemical and physical mechanisms. In the chemical mechanism, the soluble Ca component contained in electric arc furnace oxidizing slag is dissolved and forms a hydrate between fine aggregate and paste to improve the interlocking strength of fine aggregate-paste. Also, it makes the microstructure around the fine aggregate. And in the physical mechanism, electric arc furnace oxidizing slag has a twice greater surface roughness than sea sand, so the interlocking strength between fine aggregate and paste increases, which contributes to the development of compressive strength.

초고강도 콘크리트에서 잔골재로 세척사 대신에 전기로 산화 슬래그를 사용했을 경우, 재령 91일 압축강도가 약 15 MPa 정도 향상되었다. 압축강도가 향상된 원인을 규명하기 위해 잔골재의 Ca 성분 용출 특성을 고찰하였고, 잔골재와 페이스트 계면에서의 미세조직, 기공율, 미소경도 및 Ca/Si 몰비를 검토하였다. 그리고 잔골재 형상에 의한 강도 증진 효과를 알아보기 위해 잔골재의 표면 거칠기를 AFM으로 측정하였다. 실험 결과, 초고강도 콘크리트에서 전기로 산화 슬래그 잔골재 사용에 의한 강도 증진 기구는 화학적 기구와 물리적 기구로 구분할 수 있다. 화학적 기구로는, 전기로 산화 슬래그에서 함유되어 있는 가용성 Ca 성분이 용출되어 잔골재와 페이스트 사이에 반응생성물을 형성시켜 조직을 치밀화 시킴으로 잔골재-페이스트간의 부착력을 증진 시키는 것으로 나타났다. 그리고 물리적 기구로는, 전기로 산화 슬래그 잔골재는 세척사에 비해 표면의 굴곡도가 2배 정도 커서, 잔골재와 페이스트 간의 interlocking strength를 증가시킴으로서 압축강도 발현에 기여하는 것으로 판단했다.

Keywords

References

  1. Yi, N. H., Kim, J. H. J., Han, T. S., Cho, Y. G., and Lee, J. H., "Blast-Resistant Characteristics of Ultra-High Strength Concrete and Reactive Powder Concrete," Construction and Building Materials, Vol. 28, Issue 1, 2012, pp. 694-707. (doi: http://dx.doi.org/10.1016/j.conbuildmat.2011.09.014)
  2. Michael, S. and Ekkehard, F., "Ultra High Performance Concrete: Research, Development and Application in Europe," Proceedings of the 7th International Symposium on the Utilization of UHS/HPC, Washington DC, 2005, pp. 51-77.
  3. Bache, H. H., "Densified Cement/Ultra Fine Particles Based Materials," The 2nd International Conference on Superplasticizers in Concrete, Ottawa, Canada, 1981, pp. 1-35.
  4. Matte, V. and Moranville, M., "Durability of Reactive Powder Composites: Influence of Silica Fume on the Leaching Properties of Very Low Water/Binder Pastes," Cement and Concrete Composites, Vol. 21, Issue 1, 1999, pp. 1-9. (doi: http://dx.doi.org/10.1016/S0958-9465(98)00025-0)
  5. Mino, I. and Sakai, E., "Engineering Concrete," Proceedings of the MRS International Meeting on Advanced Materials, Tokyo, Japan, Vol. 13, 1989, pp. 247-254.
  6. Monteiro, P. J. M., Maso, J. C., and Ollivier, J. P., "The Aggregate-Mortar Interface," Cement and Concrete Research, Vol. 15, Issue 6, 1985, pp. 953-958. (doi: http://dx.doi.org/10.1016/0008-8846(85)90084-5)
  7. Zimbelman, R. A. "Contribution to the Problem of Cement- Aggregate Bond," Cement and Concrete Research, Vol. 15, Issue 5, 1985, pp. 801-808. (doi: http://dx.doi.org/10.1016/0008-8846(85)90146-2)
  8. Scrivener, K. L. and Nemati, K. M., "The Percolation of Pore Space in the Cement Paste/Aggregate Interfacial Zone of Concrete," Cement and Concrete Research, Vol. 26, Issue 1, 1996, pp. 35-40. (doi: http://dx.doi.org/10.1016/0008-8846(95)00185-9)
  9. Diamond, S., "Consideration in Image Analysis as Applied to Investigations of the ITZ in Concrete," Cement and Concrete Composites, Vol. 23, Issue 2-3, 2001, pp. 171-178. (doi: http://dx.doi.org/10.1016/S0958-9465(00)00085-8)
  10. Prokopski, G. and Halbiniak, J., "Interfacial Transition Zone in Cementitious Materials," Cement and Concrete Research, Vol. 30, Issue 4, 2000, pp. 579-583. (doi: http://dx.doi.org/10.1016/S0008-8846(00)00210-6)
  11. Tullin, A., Mustafa, T., and Tahir, C., "Effect of Coarse Aggregate Size and Matrix Quality on ITZ and Failure Behavior of Concrete under Uniaxial Compression," Cement and Concrete Composites, Vol. 26, Issue 6, 2004, pp. 633-638. (doi: http://dx.doi.org/10.1016/S0958-9465(03)00092-1)
  12. Zimbelman, R., "A Contribution to the Problem of Cement- Aggregate Bond, " Cement and Concrete Research, Vol. 15, Issue 5, 1985, pp. 801-808. (doi: http://dx.doi.org/10.1016/0008-8846 (85)90146-2)