DOI QR코드

DOI QR Code

The Effects of Current Density on the Grain Size of Electroplated Thick Film Nickel(Ni) by Using Ni Metal Powder Dissolved Chloride Bath

금속분말 Ni을 용해 한 Chloride Bath로 도금된 니켈후막의 입자크기에 대한 전류밀도 영향

  • Park, Keun Yung (Radioisotope Research Division, Korea Atomic Energy Research Institute (KAERI)) ;
  • Uhm, Young Rang (Radioisotope Research Division, Korea Atomic Energy Research Institute (KAERI)) ;
  • Choi, Sun Ju (Radioisotope Research Division, Korea Atomic Energy Research Institute (KAERI)) ;
  • Park, Deok-Yong (Department of Material Science and Engineering, Hanbat National University)
  • 박근용 (한국원자력연구원 동위원소 이용 기술 개발부) ;
  • 엄영랑 (한국원자력연구원 동위원소 이용 기술 개발부) ;
  • 최선주 (한국원자력연구원 동위원소 이용 기술 개발부) ;
  • 박덕용 (한밭대학교 응용소재공학과)
  • Received : 2012.11.20
  • Accepted : 2013.02.14
  • Published : 2013.02.28

Abstract

Nanocrystalline nickel (Ni) tick films were synthesized by direct current electrodeposition at current density from 1 to $30mA/cm^2$ and pH = 4. The basic composition of the bath, which was prepared by dissolving Ni metal particles in HCl, was 0.2M Ni ions. The effects of the current density on the average grain size of Ni deposits were investigated by XRD and SEM techniques. The results showed that the surface roughness was decreased as the saccharin addition was increased up to 2 g/l. The experimental results showed that the increase in the current density had a considerable effect on the average grain size of the Ni deposits. The perpendicular magnetization was raised as the thickness of coating layer was increased.

금속 분말 니켈(Ni)을 HCl용액에 용해시킨 후 $H_3BO_3$, KOH을 첨가하여 Chloride 도금용액을 제조 후 Ni plate 기판에 도금하였다. 도금두께는 $3{\mu}m$로 일정하게 유지하였다. 전류밀도를 $1{\sim}30mA/cm^2$ 변화를 준 결과 전류밀도를 증가시킬수록 Ni 후막표면이 거칠어졌다. $25mA/cm^2$$30mA/cm^2$에서는 균열된 표면형상을 관찰하였다. 또한 XRD patterns 변화를 관찰한 결과 전류밀도가 증가할수록 FCC(111)과 FCC(220) 및 FCC(311)상의 강도는 증가한 반면 FCC(200)상의 강도는 감소하는 것을 관찰하였다. 전기도금된 Ni의 수평 및 수직 자화 값을 측정하였는데 기판에 의한 수평자화 값이 크게 나왔고, 코팅층 두께가 증가할수록 수직자화 값이 커지는 것을 확인하였다.

Keywords

References

  1. M. Petec, J. S. Wike, B. P. Phillips, and C. A. Sampson, Chemical Technology Division, "Plating Nickel-63 on Copper Coupons" (1989).
  2. Y.-W. Kim, K.-H. Joeng, and I.-K. Hongm, J. Korean Ind. Eng. Chem. 19, 235 (2008).
  3. J. W. Judy, R. S. Muller, and H. H. Zappe, J. Microelectromech. Syst. 4, 162 (1995). https://doi.org/10.1109/84.475542
  4. J. W. Judy and R. S. Muller, J. Microelectromech. Syst. 6, 249 (1997). https://doi.org/10.1109/84.623114
  5. D. Pin-Qiang, Y. Hui, and L. Qiang, Trans. Mater. Heat Treatment 25, 1283 (2004).
  6. S. T. Aruna, S. Diwakar, A. Jain, and K. S. Rajam, Surf. Eng. 21, 209 (2005). https://doi.org/10.1179/174329405X50037
  7. D.-Y. Park, J. Korean. Electro-chem. Soc. 14, 169 (2011).
  8. A. M. Rashidi and A. Amadeh, Surf. Coat. Technol. 204, 353 (2009). https://doi.org/10.1016/j.surfcoat.2009.07.036
  9. Modern Electroplating, 4th ed., G. A. Di Bari, M. Schlesinger, and M. Paunovic, Editors, pp. 139-199, Wiley-Interscience, New York (2000).
  10. T. C. Franklin, Surf. Coat. Technol. 30, 415 (1987). https://doi.org/10.1016/0257-8972(87)90133-2
  11. D. Mockute and G. Bernotiene: Surf. Coat. Technol. 135, 42 (2000). https://doi.org/10.1016/S0257-8972(00)00862-8
  12. A. Ciszewski, S. Posluszny, G. Milczarek, and M. Baraniak, Surf. Coat Technol. 183, 127 (2004). https://doi.org/10.1016/j.surfcoat.2003.09.054
  13. B. Szeptycka: Russ. J. Electrochem. 37, 684 (2001). https://doi.org/10.1023/A:1016708415994
  14. Y. Nakamura, N. Kaneko, M. Watanabe, and H. Nezu, J. Appl. Electrochem. 24, 227 (1994).

Cited by

  1. The effects of current density and saccharin addition on the grain size of electroplated nickel vol.41, pp.7, 2015, https://doi.org/10.1007/s11164-013-1518-0
  2. Effects of Electrodeposition Conditions on Properties of Ni Thin Films Electrodeposited from Baths Fabricated by Dissolving Metal Ni Powders vol.48, pp.3, 2015, https://doi.org/10.5695/JKISE.2015.48.3.73