Racemization Energy of 3,2'-Tetramethylene-2-phenyl-6-(pyrid-2"'-yl)pyridine Estimated by Temperature Variation ${ }^{1} H$ NMR Experiment

A. F. M. Motiur Rahman, ${ }^{*}$ Hyochang Cha, ${ }^{\dagger}$ Kyungsook Kwak, ${ }^{\dagger}$ Eung-Seok Lee, ${ }^{\dagger}$ and Yurngdong Jahng ${ }^{\dagger,{ }^{*}}$
College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia. *E-mail: afmrahman@ksu.edu.sa
${ }^{\dagger}$ College of Pharmacy, Yeungnam University, Gyeongsan 712-749, Korea. ${ }^{*}$ E-mail: ydjahng@ynu.ac.kr Received October 27, 2012, Accepted November 11, 2012

Key Words : Racemization energy, 3,3'-Tetramethylene-2-phenyl-6-(pyrid-2"-yl)pyridine, Temperature variation H NMR, Conformational rigidity

Studies on the conformation of annulated bi-aryls have long been pursued extensively due to interest in the chirality and spectroscopic properties of conformationally restricted bi-aryls and their possible use in the determination of the absolute configuration of atropisomeric biaryls. ${ }^{1}$ One of the most extensively studied systems is $2,2^{\prime}$-polymethylenebiphenyls (1), of which the chirality depends on the biphenyl unit as the stereogenic element. ${ }^{2}$

Gottlieb et al. ${ }^{4}$ suggests that 2,2'-tetramethylenebiphenyl (1d, 1,2,3,4-dibenzo-1,3-cyclooctadiene) can exist in solution in two conformations, a nonsymmetrical twist-boat (TB) and a twist-boat-chair (TBC) with C_{2} symmetry, in nearly equal populations. These conformations interconvert via two processes: (A) I (IV) \rightleftarrows II (III) and (B) II \rightleftarrows III (Figure 1), of which process (A) has been suggested as a preferred one based on data from X-ray diffraction and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra. The difference between the TB and TBC conformations has been estimated by ${ }^{1} \mathrm{H}$ NMR spectroscopy to be $11.8 \mathrm{kcal} / \mathrm{mol}$, the latter being lower in steric energy. ${ }^{5}$ However, the energy barrier between the two TB
conformations (II and III) of has been estimated to be 23.1 $\mathrm{kcal} / \mathrm{mol},{ }^{6}$ which is high enough to prevent from interconversion of the two enantiomers. ${ }^{7}$ This energy barrier may lead the loss of flexibility on the bridge to be rigid, thus the two conformational enantiomers I and IV are not readily inter-convertible. The energy barrier between the two conformational enantiomers I and IV was, thus, estimated by thermal racemization to be $23.2 \mathrm{kcal} / \mathrm{mol},{ }^{8}$ which is reasonable agreement with $23.2 \mathrm{kcal} / \mathrm{mol}$ found by Dvorken et al. ${ }^{9}$ for the corresponding 10,11-dicarboxylic acid.

A plenty of annulated $2,2^{\prime}$-biheteroaryls ${ }^{10}$ have been reported in the literature and examined their conformational properties. The tetramethylene bridges of all systems are rigid at room temperature in the NMR time scale while trimethylene-bridges are flexible under the same condition except that of 3,3'-trimethylene-2-(quinolin-2'-yl)-4(3H)quinazolinone. It should be noted that trimethylene-bridge of 3,3'-trimethylene-2-(quinolin-2'-yl)-4(3H)-quinazolinone is conformationally rigid at room temperature and thus the activation energy has been estimated by temperature vari-

1

Compd.	n	α°	Estimated Barrier (flexibility of the bridge)
1a	1	0	0 kcal/mole
1b	2	20	4
1c	3	50	13 (flexible)
1d	4	59	35 (rigid)

Figure 1. Relationship of length of the bridge and dihedral angle between the two phenyl ringplanes. Data were taken from Ref. 3.

Figure 2. Possible conformational isomerism of 2,2-tetramethylenebiphenyl.
ation ${ }^{1} \mathrm{H}$ NMR method to afford the activation energies for inter-conversion of $15.7 \mathrm{kcal} / \mathrm{mol}$. ${ }^{11}$ However, all the attempts to resolve have not been successful as yet.
We herein reported the activation energy for the interconversion of conformational enantiomers of 3,2'-tetramethyl-ene-2-phenyl-6-(pyrid-2"-yl)pyridine (2) estimated by ${ }^{1} \mathrm{H}$ NMR temperature variation experiment.

Results and Discussion

The required compound, 3,2'-tetramethylene-2-phenyl-6-(pyrid-2"-yl)pyridine (2), was prepared by employing previously reported method ${ }^{10 \mathrm{~d}}$ and fully characterized by spectroscopic methods. All proton and carbon resonances were assigned based on the COSY, HMBC as well as HMQC. ${ }^{1} \mathrm{H}$ NMR temperature variation experiment was performed on a Bruker- 250 spectrometer in DMSO- d_{6}.
The length of the bridging polymethylene unit is critical to induce the rigidity of the bridge. ${ }^{1} \mathrm{H}$ NMR spectrum has long been used as a probe to determine the flexibility of the annulating bridges. In annulated bi-aryls. ${ }^{10,11}{ }^{1} \mathrm{H}$ NMR-spectra, specially the aliphatic regions, afforded information on the conformations of compounds which were highly dependent on the length of the bridge. The tetramethylene bridges on the systems examined are rigid at room temperature in the NMR time scale while the protons in di- and trimethylenebridges in most of annulated biaryls are flexible enough to satisfy $\mathrm{N}+1$ splitting rule. ${ }^{10}$ The aliphatic regions of ${ }^{1} \mathrm{NMR}$ spectrum of 2 showed four different proton resonances indicating that all the eight protons were not magnetically equivalent (Figure 3).
Although ${ }^{13} \mathrm{C}$ NMR spectrum of 2 showed all required

Figure 3. ${ }^{1} \mathrm{H}$ NMR spectrum of $2\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, aliphatic region only).
numbers of $4 s p^{3}$-hybridged carbon resonances such as d $32.56\left(\mathrm{C}_{\alpha^{\prime}}\right), 31.80\left(\mathrm{C}_{\alpha}\right), 29.29\left(\mathrm{C}_{\beta^{\prime}}\right)$, and $29.00\left(\mathrm{C}_{\beta}\right)$, two protons of the each methylene unit adjacent to aromatic rings are experiencing magnetic non-equivalency more evidently, thus showing two doublets of doublets, respectively. ${ }^{10 \mathrm{c}-\mathrm{f}} \mathrm{A}$ hydrogen $\mathrm{H}_{\alpha \mathrm{A}}$ of the two H 's on the carbon C_{α} adjacent to C 3 of the central pyridine ring and that $\left(\mathrm{H}_{\alpha^{\prime} \mathrm{A}}\right)$ on the carbon ($\mathrm{C}_{\alpha^{\prime}}$) adjacent to C 2 of phenyl ring lie the deshielding plane of the adjacent aromatic ring, respectively, thus are deshielded to $\delta 2.832\left({ }^{2} J=13.5,{ }^{3} J=8.1 \mathrm{~Hz}\right)$ and δ $2.790\left({ }^{2} J=13.5,{ }^{3} J=8.1 \mathrm{~Hz}\right)$. The other hydrogen $\mathrm{H}_{\alpha \mathrm{B}}$ on C_{α} and that $\left(\mathrm{H}_{\alpha^{\prime} \mathrm{B}}\right)$ on $\mathrm{C}_{\alpha^{\prime}}$ experience shielding effect of the adjacent phenyl and central pyridine, respectively, to give resonances overlapped in the region of δ 2.29-2.01.

Such correlation was confirmed by HMBC spectrum of 2, in which ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ long-range correlations between C_{β} (δ 29.29) and two hydrogens $\mathrm{H}_{\alpha^{\prime} \mathrm{A}}(\delta 2.790)$ and $\mathrm{H}_{\alpha^{\prime} \mathrm{B}}(\delta 2.13-$ 2.08), and similarly $\mathrm{C}_{\beta^{\prime}}(\delta 29.00)$ to $\mathrm{H}_{\alpha \mathrm{A}}(\delta 2.810)$ and $\mathrm{H}_{\alpha \mathrm{B}}(\delta$ 2.29-2.01), respectively, were observed as shown in Figure 3. HMQC spectrum of 2 additionally confirmed ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ correlations between $\mathrm{C}_{\alpha}(\delta 31.80)$ and two hydrogens $\mathrm{H}_{\alpha \mathrm{A}}$ and $\mathrm{H}_{\alpha \mathrm{B}}$, and similarly $\mathrm{C}_{\alpha^{\prime}}(\delta 32.56)$ to $\mathrm{H}_{\alpha^{\prime} \mathrm{A}}$ and $\mathrm{H}_{\alpha^{\prime} \mathrm{B}}$, respectively and similar correlation was observed between C_{β} and two hydrogens $\mathrm{H}_{\beta \mathrm{A}}$ and $\mathrm{H}_{\beta \mathrm{B}}$, and similarly $\mathrm{C}_{\beta^{\prime}}$ to $\mathrm{H}_{\beta^{\prime} \mathrm{A}}$ and $\mathrm{H}_{\beta^{\prime} \text { в. }}$

In addition, vicinal coupling constants (${ }^{3} J=8.1 \mathrm{~Hz}$) of $\mathrm{H}_{\alpha \mathrm{A}}$ would lead corresponding dihedral angles $\mathrm{H}_{\alpha A}-\mathrm{C}_{\alpha}-\mathrm{C}_{\beta}-$ $\mathrm{H}_{\beta \mathrm{A}}$ and $\mathrm{H}_{\alpha \mathrm{A}}-\mathrm{C}_{\alpha}-\mathrm{C}_{\beta}-\mathrm{H}_{\beta \mathrm{B}} 165.9^{\circ}$ and 11.6°, respectively, from Karplus relationship. ${ }^{12}$ These values were well matched to the values from X-ray crystal structure of 2. ${ }^{13}$

Temperature variation experiment of the aliphatic region of 3,2'-tetramethylene-2-phenyl-6-(pyrid-2"-yl)pyridine led coalescence of two sets of resonances at $110^{\circ} \mathrm{C}$ (Figure 5). The proton resonance at $\delta 2.830$ for $\mathrm{H}_{\alpha \mathrm{A}}$ and a resonance at the region $\delta 2.13-2.01$ as well as resonances $\delta 2.790$ and δ 2.13-2.01 collapsed to two broad singlets at $\delta 2.790$ and 2.110 at $110^{\circ} \mathrm{C}$. Such a time-dependent corresponding to coalescence could be explained that the rate of interconversion of the two conformational isomers would become comparable with the frequency difference between $\mathrm{H}_{\alpha \mathrm{A}}$ and $\mathrm{H}_{\alpha \mathrm{B}}$ as well as $\mathrm{H}_{\alpha^{\prime} \mathrm{A}}$ and $\mathrm{H}_{\alpha^{\prime} \mathrm{B} .}{ }^{14}$ Two geminal hydrogens at each carbon are equivalent to confirm flexibility of the bridge of 2 at $110^{\circ} \mathrm{C}$. The activation energy of the interconversion was, thus, calculated by previously employed equation ${ }^{15}$ to give $23 \mathrm{kcal} / \mathrm{mol}$ which was somewhat comparable to that of the corresponding carbon analogue (1d).

In conclusion, the racemization energy for the two conformational enantiomers of 3,2'-tetramethylene-2-phenyl-6-(pyrid-

Figure 4. Enantiomers of $\mathbf{2}$ and selected ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ long-range correlations in HMBC spectrum.

Figure 5. Temperature variation experiment of 2 (aliphatic region only).
$2^{\prime \prime}$-yl)pyridine was estimated by temperature variation ${ }^{1} \mathrm{H}$ NMR method to give $23 \mathrm{kcal} /$ mole.

Experimental

3,2'-Tetramethylene-2-phenyl-6-(pyrid-2"'-yl)pyridine

 (2). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 8.68(\mathrm{~d}, 1 \mathrm{H}, J=4.8 \mathrm{~Hz}$, H6"), $8.36(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}, \mathrm{H} 3 "$ and H5), $7.88(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=$ $8.1 \mathrm{~Hz}, \mathrm{H} 4 "), 7.80$ (d, 1H, $J=8.1 \mathrm{~Hz}, \mathrm{H} 4), 7.46-7.42$ (m, 3H, H4', H5', H6'), 7.36-7.33 (m, 2H, H3', H5"), 2.832 (dd, 1H, $\left.J_{\mathrm{gem}}=13.5 \mathrm{~Hz}, J_{\text {vic }}=8.1 \mathrm{~Hz}, \mathrm{H}_{\alpha \mathrm{A}}\right)$, and $2.790\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{gem}}=\right.$ $\left.13.5 \mathrm{~Hz}, J_{\text {vic }}=8.1 \mathrm{~Hz}, \mathrm{H}_{\alpha^{\prime} \mathrm{A}}\right), 2.29-2.01(\mathrm{~m}, 4 \mathrm{H}), 1.52-1.44$ $(\mathrm{m}, 2 \mathrm{H})$. All the carbon resonances were assigned as follows: $152.88\left(\mathrm{C}_{2}\right), 149.44\left(\mathrm{C}_{6^{\prime \prime}}\right), 141.83\left(\mathrm{C}_{2^{2}}\right), 139.25\left(\mathrm{C}_{1^{\prime}}\right), 138.76$ $\left(\mathrm{C}_{4}\right), 138.04\left(\mathrm{C}_{5}\right), 137.42\left(\mathrm{C}_{4}\right), 129.51\left(\mathrm{C}_{3^{\prime}}\right), 129.25\left(\mathrm{C}_{6}\right)$, $129.02\left(\mathrm{C}_{4}\right), 126.04\left(\mathrm{C}_{5^{\prime}}\right), 124.16\left(\mathrm{C}_{5^{\prime \prime}}\right), 120.64\left(\mathrm{C}_{3^{\prime \prime}}\right), 119.84$ $\left(\mathrm{C}_{3}\right), 32.56\left(\mathrm{C}_{\alpha}\right), 31.80\left(\mathrm{C}_{\alpha^{\prime}}\right), 29.29\left(\mathrm{C}_{\beta}\right), 29.00\left(\mathrm{C}_{\beta^{\prime}}\right)$.

Acknowledgments. Financial support from National Re-
search Foundation (2010-0012473) is gratefully acknowledged.

References

1. Mislow, K. Angew. Chem. 1958, 70, 683.
2. Prelog, V.; Helmchen, G. Angew. Chem. Int. Ed. Engl. 1982, 21, 567.
3. (a) Beaven, G. H.; Bird, G. R.; Hall, D. M.; Johnson, E. A.; Ladbury, J. E.; Lesslie, M. S.; Turner, E. E. J. Chem. Soc. 1955, 2708. (b) Rashidi-Ranjbar, P.; Man, Y.-M.; Sandström, J.; Wong, H. N. C. J. Org. Chem. 1989, 54, 4888.
4. Gottlieb, H. E.; Merviè, M.; Ghera, E.; Frolow, F. J. Chem. Soc., Perkin Trans. I 1982, 2353.
5. Rashidi-Ranjbar, P.; Najapour, J.; Piri, F. J. Phys. Org. Chem. 1998, 11, 781.
6. Rashidi-Ranjbar, P.; Sandström, J. J. Chem. Soc., Perkin Trans. 2 1990, 901.
7. Hall, D. M. Progress in Stereochemistry; Aylett, B. J., Harris, M. A., Eds.; Butterworth: London 1969; Vol 4, p 1.
8. Rashidi-Ranjbar, P.; Sandström, J. Tetrahedron Lett. 1987, 28, 1537.
9. Dvorken, L. V.; Smyth, R. B.; Mislow, K. J. Am. Chem. Soc. 1958, 80, 486.
10. (a) Thummel, R. P.; Lefoulon, F.; Cantu, D.; Mahadevan, R. J. Org. Chem. 1984, 49, 2208. (b) Thummel, R. P.; Lefoulon, F. J. Org. Chem. 1985, 50, 666. (c) Thummel, R. P.; Jahng, Y. J. Org. Chem. 1987, 52, 73. (d) Jahng Y.; Park, J. G. Inorg. Chim. Acta 1998, 267, 265. (e) Chang, H. W.; Kim, S. I.; Jung, H. J.; Jahng, Y. Heterocycles 2003, 60, 1359. (f) Jahng, Y.; Park, J. Bull. Korean Chem. Soc. 1999, 20, 1200.
11. Lee, E. S.; Park, J. G.; Kim, S. I.; Jahng, Y. Heterocycles 2006, 68, 151.
12. Karplus, M. J. Chem Phys. 1959, 30, 11.
13. Park, J. G.; Jahng, Y. Unpublished results: Taken from Ph.D. dissertation of Park, J. G., Yeungnam University, 2002, 02.
14. Jackman, L. M.; Sternhell, S. Application of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry, $2^{\text {nd }}$ ed.; Pergamon Press: Oxford, 1969; pp 55-60 and 357-379.
15. Friebolin, H. Basic One- and Two-Dimensional NMR Spectroscopy; $2^{\text {nd }}$ ed., VCH: Weinheim, 1993; p 287. The equation employed for calculating racemization energy is $\mathrm{G}_{\mathrm{c}}{ }^{\neq}=4.575 \mathrm{Tc}[9.972+\log (\mathrm{Tc} /$ $\Delta v)$], where Tc is the coalescence temperature and Δv is the difference in chemical shifts in Hz between the two resolved peaks.
