DOI QR코드

DOI QR Code

Test of Stokes-Einstein Formula for a Tracer in a Mesoscopic Solvent by Molecular Dynamics Simulation

  • Lee, Song Hi (Department of Chemistry, Kyungsung University)
  • Received : 2012.11.05
  • Accepted : 2012.11.26
  • Published : 2013.02.20

Abstract

In this work, the friction and diffusion coefficients of a tracer in a mesoscopic solvent are evaluated as a function of the tracer size by a hybrid molecular dynamics simulation where solute molecules evolve by Newton's equations of motion but the solvent evolves through the multi-particle collision dynamics. The friction coefficient is shown to scale linearly with the tracer size for larger tracers in accord with predictions of hydrodynamic theories. The diffusion coefficient of tracer is found to be inversely proportional to tracer size. The behavior of Stokes-Einstein formula is validated as a function of tracer size.

Keywords

References

  1. Malevanets, A.; Kapral, R. J. Chem. Phys. 1999, 110, 8605. https://doi.org/10.1063/1.478857
  2. Malevanets, A.; Kapral, R. J. Chem. Phys. 2000, 112, 7260. https://doi.org/10.1063/1.481289
  3. Lee, S. H.; Kapral, R. Physica A 2001, 298, 56.
  4. Brey, J. J.; Gmez Ordez, J. J. Chem. Phys. 1982, 76, 3260. https://doi.org/10.1063/1.443319
  5. Espaol, P.; Ziga, I. J. Chem. Phys. 1993, 98, 574. https://doi.org/10.1063/1.464599
  6. Ould-Kaddour, F.; Levesque, D. J. Chem. Phys. 2003, 118, 7888. https://doi.org/10.1063/1.1563593
  7. Lee, S. H. Bull. Korean Chem. Soc. 2010, 31, 959. https://doi.org/10.5012/bkcs.2010.31.04.959
  8. Lee, S. H. Theor. Chem. Acc. 2010, 127, 613. https://doi.org/10.1007/s00214-010-0757-z
  9. Lee, S. H. Bull. Korean Chem. Soc. 2012, 33, 735. https://doi.org/10.5012/bkcs.2012.33.2.735
  10. Lee, S. H.; Kapral, R. J. Chem. Phys. 2004, 121, 11163. https://doi.org/10.1063/1.1815291
  11. Ihle, T.; Kroll, D. M. Phys. Rev. E 2001, 63, 020201. https://doi.org/10.1103/PhysRevE.63.020201
  12. Lamura, A.; Gompper, G.; Ihle, T.; Kroll, D. M. Europhys. Lett. 2001, 56, 768 https://doi.org/10.1209/epl/i2001-00586-5
  13. Lamura, A.; Gompper, G.; Ihle, T.; Kroll, D. M. Europhys. Lett. 2001, 56, 319. https://doi.org/10.1209/epl/i2001-00522-9
  14. Swope, W. C.; Andersen, H. C.; Berens, P. H.; Wilson, K. R. J. Chem. Phys. 1982, 76, 637. https://doi.org/10.1063/1.442716
  15. Ryckaert, J. P.; Ciccotti, G.; Berendsen, H. J. J. Comp. Phys. 1977, 23, 327.
  16. Meier, M.; Laesecke, A.; Kabelac, S. J. Chem. Phys. 2004, 121, 3671. https://doi.org/10.1063/1.1770695
  17. Meier, M.; Laesecke, A.; Kabelac, S. J. Chem. Phys. 2004, 121, 9526. https://doi.org/10.1063/1.1786579
  18. Meier, M.; Laesecke, A.; Kabelac, S. J. Chem. Phys. 2004, 122, 014513.
  19. Kubo, R. J. Phys. Soc. Jpn. 1957, 12, 570. https://doi.org/10.1143/JPSJ.12.570
  20. Kubo, R. Rep. Prog. Phys. 1966, 29, 255. https://doi.org/10.1088/0034-4885/29/1/306
  21. Kubo, R. in Many-Body Problems, The Fluctuation-Dissipation Theorem; Parry, W. E. et al. Eds.; Benjamin: New York, 1969.
  22. Kikuchi, N.; Pooley, C. M.; Ryder, J. F.; Yoemans, J. M. J. Chem. Phys. 2003. 119, 6388. https://doi.org/10.1063/1.1603721
  23. Alder, B. J.; Wainwright, T. E. Phys. Rev. Lett. 1967, 18, 988. https://doi.org/10.1103/PhysRevLett.18.988

Cited by

  1. Friction and diffusion of a nano-colloidal disk in a two-dimensional solvent with a liquid–liquid transition vol.20, pp.10, 2018, https://doi.org/10.1039/C7CP08302E