DOI QR코드

DOI QR Code

Polystyrene-b-poly(oligo(ethylene oxide) Monomethyl Ether Methacrylate)-b-polystyrene Triblock Copolymers as Potential Carriers for Hydrophobic Drugs

  • You, Qianqian (Institute of Fine Chemistry and Engineering, College of Chemistry and Chemical Engineering, Henan University) ;
  • Chang, Haibo (Institute of Fine Chemistry and Engineering, College of Chemistry and Chemical Engineering, Henan University) ;
  • Guo, Qipeng (Polymers Research Group, Institute for Technology Research and Innovation, Deakin University) ;
  • Zhang, Yudong (Institute of Fine Chemistry and Engineering, College of Chemistry and Chemical Engineering, Henan University) ;
  • Zhang, Puyu (Institute of Fine Chemistry and Engineering, College of Chemistry and Chemical Engineering, Henan University)
  • Received : 2012.08.27
  • Accepted : 2012.11.22
  • Published : 2013.02.20

Abstract

A simple and effective method is introduced to synthesize a series of polystyrene-b-poly(oligo(ethylene oxide) monomethyl ether methacrylate)-b-polystyrene (PSt-b-POEOMA-b-PSt) triblock copolymers. The structures of PSt-b-POEOMA-b-PSt copolymers were characterized by Fourier-transform infrared spectroscopy (FTIR) and nuclear magnetic resonance ($^1H$ NMR) spectroscopy. The molecular weight and molecular weight distribution of the copolymer were measured by gel permeation chromatography (GPC). Furthermore, the self-assembling and drug-loaded behaviours of three different ratios of PSt-b-POEOMA-b-PSt were studied. These copolymers could readily self-assemble into micelles in aqueous solution. The vitamin E-loaded copolymer micelles were produced by the dialysis method. The micelle size and core-shell structure of the block copolymer micelles and the drug-loaded micelles were confirmed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The thermal properties of the copolymer micelles before and after drug-loaded were investigated by different scanning calorimetry (DSC). The results show that the micelle size is slightly increased with increasing the content of hydrophobic segments and the micelles are still core-shell spherical structures after drug-loaded. Moreover, the glass transition temperature (Tg) of polystyrene is reduced after the drug loaded. The drug loading content (DLC) of the copolymer micelles is 70%-80% by ultraviolet (UV) photolithography analysis. These properties indicate the micelles self-assembled from PSt-b-POEOMA-b-PSt copolymers would have potential as carriers for the encapsulation of hydrophobic drugs.

Keywords

References

  1. Li, S. L.; Palmer, A. F. Macromolecules 2005, 38, 5686. https://doi.org/10.1021/ma047858j
  2. Zhang, N.; Guo, S. R. J. Polym. Sci. Part A: Polym. Chem. 2006, 44, 1271. https://doi.org/10.1002/pola.21235
  3. Geng, Y.; Ahmed, F.; Bhasin, N. J. Phys. Chem. B. 2005, 109, 3772. https://doi.org/10.1021/jp0459559
  4. Ouarti, N.; Viville, P.; Lazzaroni, R. Langmuir 2005, 21, 1180. https://doi.org/10.1021/la048944f
  5. Chen, Z. Y.; Cui, H. G.; Hales, K. J. Am. Chem. Soc. 2005, 127, 8592. https://doi.org/10.1021/ja050290p
  6. Tang, X. Z.; Pan, C. Y. Acta Polym. Sin. 2008, 12, 1192.
  7. Zou, P.; Pan, C. Y. Acta Polym. Sin. 2007, 10, 9874.
  8. Pizarro, G. del C.; Marambio, O. G.; Jeria-Orell, M.; Rivas, B. L.; Habicher, W. D. Polym. Adv. Technol. 2011, 22, 1024. https://doi.org/10.1002/pat.1611
  9. Nishiyama, N.; Kataoka, K. Pharmacol Therap. 2006,112, 630. https://doi.org/10.1016/j.pharmthera.2006.05.006
  10. Savic, R.; Eisenberg, A.; Maysinger, D. J. Drug Targeting. 2006, 4, 343.
  11. Jagur-Grodzinski, J. Polym. Adv. Technol. 2009, 20, 595. https://doi.org/10.1002/pat.1304
  12. Braunecker, W. A.; Matyjaszewski, K. Prog. Polym. Sci. 2007, 32, 93. https://doi.org/10.1016/j.progpolymsci.2006.11.002
  13. Tsarevsky, N. V.; Matyjaszewski, K. Chem. Rev. 2007, 107, 2270. https://doi.org/10.1021/cr050947p
  14. Matyjaszewski, K.; Xia, J. H. Chem. Rev. 2001, 101, 2921. https://doi.org/10.1021/cr940534g
  15. Moad, G.; Rizzardo, E.; Thang, S. H. Aust. J. Chem. 2006, 59, 669. https://doi.org/10.1071/CH06250
  16. Oh, J. K.; Tang, C. B.; Gao, H. F.; Tsarevsky, N. V.; Matyjaszewski, K. J. Am. Chem. Soc. 2006, 128, 5578. https://doi.org/10.1021/ja060586a
  17. Tamilvanan, S.; Sa, B. Int. J. Pharm. 2000, 201, 187. https://doi.org/10.1016/S0378-5173(00)00409-9
  18. Venier-Julienne, M. C.; Benoit, J. P. Pharm. Acta Helv. 1996, 71, 121. https://doi.org/10.1016/0031-6865(95)00059-3
  19. Oh, J. K.; Bencherif, S. A.; Matyjaszewski, K. Polymer 2009, 50, 4407. https://doi.org/10.1016/j.polymer.2009.06.045
  20. Zhang, P. Y.; Liu, Y.; Peng, L. C.; Guo, Y. G. Acta Polym. Sin. 2010, 1, 59.
  21. Lai, J. T.; Filla, D.; Shea, R. Macromolecules 2002, 35, 6754. https://doi.org/10.1021/ma020362m
  22. Ananthapadmanabhan, K. P.; Goddard, E. D.; Turro, N. J.; Kuo, P. L. Langmuir 1985, 1, 352. https://doi.org/10.1021/la00063a015
  23. Guan, Y.; Lin, H.; Cai, X. J.; Jiang, H. L.; Tu, K. H.; Wang, L. Q. Acta Polym. Sin. 2010, 4, 390.
  24. Li, J. H. Journal of Daqing College 1999, 19, 41.