DOI QR코드

DOI QR Code

Importance of Accurate Charges in Binding Affinity Calculations: A Case of Neuraminidase Series

  • Park, Kichul (Department of Bioinformatics, Korea University) ;
  • Sung, Nack Kyun (Department of Bioinformatics, Korea University) ;
  • Cho, Art E. (Department of Bioinformatics, Korea University)
  • Received : 2012.10.14
  • Accepted : 2012.11.21
  • Published : 2013.02.20

Abstract

It has been shown that calculating atomic charges using quantum mechanical level theory greatly improves the accuracy of docking. A protocol was developed and shown to be effective. That this protocol works is just a manifestation of the fact that electrostatic interactions are important in protein-ligand binding. In order to investigate how the same protocol helps in prediction of binding affinities, we took a series of known cocrystal structures of influenza neuraminidase inhibitors with the receptor and performed docking with Glide SP, Glide XP, and QPLD, the last being a workflow that incorporates QM/MM calculations to replace the fixed atomic charges of force fields with quantum mechanically recalculated ones at a given docking pose, and predicted the binding affinities of each cocrystal. The correlation with experimental binding affinities considerably improved with QPLD compared to Glide SP/XP yielding $r^2$ = 0.83. The results suggest that for binding sites, such as that of neuraminidase, which are laden with hydrophilic residues, protocols such as QPLD which utilizes QM-based atomic charges can better predict the binding affinities.

Keywords

References

  1. Cho, A. E.; Guallar, V.; Berne, B. J.; Friesner, R. Journal of Computational Chemistry 2005, 26, 915. https://doi.org/10.1002/jcc.20222
  2. Cho, A. E.; Rinaldo, D. Journal of Computational Chemistry 2009, 30, 2609. https://doi.org/10.1002/jcc.21270
  3. Claussen, H.; Buning, C.; Rarey, M.; Lengauer, T. Journal of Molecular Biology 2001, 308, 377. https://doi.org/10.1006/jmbi.2001.4551
  4. Ewing, T. J. A.; Makino, S.; Skillman, A. G.; Kuntz, I. D. Journal of Computer-Aided Molecular Design 2001, 15, 411. https://doi.org/10.1023/A:1011115820450
  5. Chung, J. Y.; Hah, J. M.; Cho, A. E. J. Chem. Inf. Model 2009, 49, 2382. https://doi.org/10.1021/ci900231p
  6. Bortolato, A.; Moro, S. J. Chem. Inf. Model 2007, 47, 572. https://doi.org/10.1021/ci600369n
  7. Tounge, B. A.; Reynolds, C. H. J. Med. Chem. 2003, 46, 2074. https://doi.org/10.1021/jm020513b
  8. Lin, H.; Truhlar, D. G. Theoretical Chemistry Accounts 2007, 117, 185. https://doi.org/10.1007/s00214-006-0143-z
  9. Murphy, R. B.; Philipp, D. M.; Friesner, R. A. Journal of Computational Chemistry 2000, 21, 1442. https://doi.org/10.1002/1096-987X(200012)21:16<1442::AID-JCC3>3.0.CO;2-O
  10. Murphy, R. B.; Philipp, D. M.; Friesner, R. A. Chemical Physics Letters 2000, 321, 113. https://doi.org/10.1016/S0009-2614(00)00289-X
  11. Varghese, J. N.; Laver, W. G.; Colman, P. M. Nature 1983, 303, 35. https://doi.org/10.1038/303035a0
  12. Colman, P. M.; Varghese, J. N.; Laver, W. G. Nature 1983, 303, 41. https://doi.org/10.1038/303041a0
  13. Burch, J.; Paulden, M.; Conti, S.; Stock, C.; Corbett, M.; Welton, N. J.; Ades, A. E.; Sutton, A.; Cooper, N.; Elliot, A. J.; Nicholson, K.; Duffy, S.; McKenna, C.; Stewart, L.; Westwood, M.; Palmer, S. Health Technol. Assess 2009, 13, 1.
  14. Lew, W.; Wu, H.; Chen, X.; Graves, B. J.; Escarpe, P. A.; MacArthur, H. L.; Mendel, D. B.; Kim, C. U. Bioorg. Med. Chem. Lett. 2000, 10, 1257. https://doi.org/10.1016/S0960-894X(00)00214-6
  15. Lew, W.; Chen, X.; Kim, C. U. Curr. Med. Chem. 2000, 7, 663. https://doi.org/10.2174/0929867003374886
  16. von Itzstein, M.; Wu, W. Y.; Kok, G. B.; Pegg, M. S.; Dyason, J. C.; Jin, B.; Van Phan, T.; Smythe, M. L.; White, H. F.; Oliver, S. W. et al. Nature 1993, 363, 418. https://doi.org/10.1038/363418a0
  17. Holzer, C. T.; von Itzstein, M.; Jin, B.; Pegg, M. S.; Stewart, W. P.; Wu, W. Y. Glycoconj. J. 1993, 10, 40. https://doi.org/10.1007/BF00731185
  18. Berman, H. M.; Bhat, T. N.; Bourne, P. E.; Feng, Z.; Gilliland, G.; Weissig, H.; Westbrook, J. Nat. Struct. Biol. 2000, 7 Suppl, 957.
  19. Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. N.; Weissig, H.; Shindyalov, I. N.; Bourne, P. E. Nucleic. Acids Res. 2000, 28, 235. https://doi.org/10.1093/nar/28.1.235
  20. Armstrong, K. A.; Tidor, B.; Cheng, A. C. J. Med. Chem. 2006, 49, 2470. https://doi.org/10.1021/jm051105l
  21. Repasky, M. P.; Murphy, R. B.; Banks, J. L.; Greenwood, J. R.; Tubert-Brohman, I.; Bhat, S.; Friesner, R. A. J. Comput. Aided Mol. Des. 2012, 26, 787. https://doi.org/10.1007/s10822-012-9575-9
  22. Friesner, R. A.; Murphy, R. B.; Repasky, M. P.; Frye, L. L.; Greenwood, J. R.; Halgren, T. A.; Sanschagrin, P. C.; Mainz, D. T. Journal of Medicinal Chemistry 2006, 49, 6177. https://doi.org/10.1021/jm051256o
  23. Taylor, N. R.; Cleasby, A.; Singh, O.; Skarzynski, T.; Wonacott, A. J.; Smith, P. W.; Sollis, S. L.; Howes, P. D.; Cherry, P. C.; Bethell, R.; Colman, P.; Varghese, J. J. Med. Chem. 1998, 41, 798. https://doi.org/10.1021/jm9703754
  24. Smith, B. J.; Colman, P. M.; Von Itzstein, M.; Danylec, B.; Varghese, J. N. Protein Sci. 2001, 10, 689. https://doi.org/10.1110/ps.41801
  25. Smith, B. J.; McKimm-Breshkin, J. L.; McDonald, M.; Fernley, R. T.; Varghese, J. N.; Colman, P. M. J. Med. Chem. 2002, 45, 2207. https://doi.org/10.1021/jm010528u
  26. Varghese, J. N.; Epa, V. C.; Colman, P. M. Protein Sci. 1995, 4, 1081. https://doi.org/10.1002/pro.5560040606
  27. Varghese, J. N.; Colman, P. M.; van Donkelaar, A.; Blick, T. J.; Sahasrabudhe, A.; McKimm-Breschkin, J. L. Proc. Natl. Acad Sci. USA 1997, 94, 11808. https://doi.org/10.1073/pnas.94.22.11808
  28. Varghese, J. N.; Smith, P. W.; Sollis, S. L.; Blick, T. J.; Sahasrabudhe, A.; McKimm-Breschkin, J. L.; Colman, P. M. Structure 1998, 6, 735. https://doi.org/10.1016/S0969-2126(98)00075-6
  29. Young, T.; Abel, R.; Kim, B.; Berne, B. J.; Friesner, R. A. Proc. Natl. Acad Sci. USA 2007, 104, 808. https://doi.org/10.1073/pnas.0610202104
  30. Stoll, V.; Stewart, K. D.; Maring, C. J.; Muchmore, S.; Giranda, V.; Gu, Y. G.; Wang, G.; Chen, Y.; Sun, M.; Zhao, C.; Kennedy, A. L.; Madigan, D. L.; Xu, Y.; Saldivar, A.; Kati, W.; Laver, G.; Sowin, T.; Sham, H. L.; Greer, J.; Kempf, D. Biochemistry 2003, 42, 718. https://doi.org/10.1021/bi0205449
  31. Cho, A. E.; Chung, J. Y.; Kim, M.; Park, K. Quantum Mechanical Scoring for Protein Docking; Journal of Chemical Physics 2009, 131(13), 134108.

Cited by

  1. Combined structure- and ligand-based pharmacophore modeling and molecular dynamics simulation studies to identify selective inhibitors of MMP-8 vol.20, pp.5, 2014, https://doi.org/10.1007/s00894-014-2191-y
  2. Activity prediction of substrates in NADH-dependent carbonyl reductase by docking requires catalytic constraints and charge parameterization of catalytic zinc environment vol.29, pp.11, 2015, https://doi.org/10.1007/s10822-015-9878-8
  3. strains pp.1538-0254, 2018, https://doi.org/10.1080/07391102.2018.1526714
  4. The evaluation of QM/MM-driven molecular docking combined with MM/GBSA calculations as a halogen-bond scoring strategy vol.73, pp.2, 2013, https://doi.org/10.1107/s205252061700138x
  5. Hierarchical-Clustering, Scaffold-Mining Exercises and Dynamics Simulations for Effectual Inhibitors Against Lipid-A Biosynthesis of Helicobacter pylori vol.12, pp.3, 2019, https://doi.org/10.1007/s12195-019-00572-5