DOI QR코드

DOI QR Code

The Distance-Dependent Fluorescence Enhancement Phenomena in Uniform Size Ag@SiO2@SiO2(dye) Nanocomposites

  • Arifin, Eric (Interdisciplinary Program in Nanoscience and Technology, Seoul National University) ;
  • Lee, Jin-Kyu (Department of Chemistry, Seoul National University)
  • Received : 2012.10.17
  • Accepted : 2012.11.20
  • Published : 2013.02.20

Abstract

$Ag@SiO_2@SiO_2$(FITC) nanocomposites were prepared by the simple polyol process and St$\ddot{o}$ber method. Fluorescence enhancement of fluorescein moiety (fluorescein isothiocyanate, FITC) was investigated in the presence of silver nanoparticles in $Ag@SiO_2@SiO_2$(FITC) system with varying thickness (X nm) of first silica shell. Maximum enhancement factor of 4.3 fold was achieved in $Ag@SiO_2@SiO_2$(FITC) structure with the first silica shell thickness of 8 nm and the average separation distance of 11 nm between the surface of silver nanoparticle and fluorescein moiety. The enhancement is believed to be originated from increased excitation rate of fluorescein moiety due to concentrated local electromagnetic field which was improved by interaction of light with silver nanoparticles.

Keywords

References

  1. Lakowicz, J. R. Principles of Fluorescence Spectroscopy; Springer: New York, 2006; 3rd ed., p 1.
  2. Eutis, S.; El-Sayed, M. A. Chem. Soc. Rev. 2006, 35, 209. https://doi.org/10.1039/b514191e
  3. Barnes, W. L.; Dereux, A.; Ebbesen, T. W. Nature 2003, 424, 824. https://doi.org/10.1038/nature01937
  4. Daniel, M. C.; Astruc, D. Chem. Rev. 2004, 104, 293.
  5. Ray, K.; Badugu, R.; Lakowicz, J. R. Chem. Mater. 2007, 19, 5902. https://doi.org/10.1021/cm071510w
  6. Aslan, K.; Lakowicz, J. R.; Geddes, C. D. J. Phys. Chem. B. 2005, 109, 6247. https://doi.org/10.1021/jp044235z
  7. Aslan, K.; Leonenko, Z.; Lakowicz, J. R.; Geddes, C. D. J. Phys. Chem. B 2005, 109, 3157. https://doi.org/10.1021/jp045186t
  8. Ow, H.; Larson, D. R.; Srivastava, M.; Baird, B. A.; Webb, W. W.; Weisner, U. Nano Lett. 2005, 5, 113. https://doi.org/10.1021/nl0482478
  9. Cha, J.; Ping, C.; Lee, J. K. J. Mater. Chem. 2010, 20, 5533. https://doi.org/10.1039/b924702e
  10. Piao, Y.; Burns, A.; Kim, J.; Weisner, U.; Hyeon, T. Adv. Func. Mater. 2008, 18, 3745. https://doi.org/10.1002/adfm.200800731
  11. Stranik, O.; Nooney, R.; Mc. Donagh, C.; MacCraith, B. D. Plasmonics 2007, 2, 15. https://doi.org/10.1007/s11468-006-9020-9
  12. Li, N.; Wang, H.; Xue, M.; Chang, C.; Chen, Z.; Zhuo, L.; Tang, B. Chem. Commun. 2012, 48, 2507. https://doi.org/10.1039/c2cc16376d
  13. Li, C.; Zhu, Y.; Zhang, X.; Yang, X.; Li, C. RSC. Adv. 2012, 2, 1765. https://doi.org/10.1039/c2ra01032a
  14. Kim, K. S.; Kim, J. H.; Kim, H.; Laquai, F.; Arifin, E.; Lee, J. K.; Yoo, S. I.; Sohn, B. H. ACS Nano. 2012, 6, 5051. https://doi.org/10.1021/nn301893e
  15. Viger, M. L.; Rioux, M.; Rainville, L.; Boudreau, D. Nano Lett. 2009, 9, 3066. https://doi.org/10.1021/nl901553u
  16. Krutyakov, Y. A.; Kudrinskiy, A. A.; Olenin, A. Y.; Lisichkin, G. V. Russ. Chem. Rev. 2008, 77, 233. https://doi.org/10.1070/RC2008v077n03ABEH003751
  17. Zhang, W.; Qiao, Z.; Chen, J. Mat. Sci. Eng. B 2007, 142, 1. https://doi.org/10.1016/j.mseb.2007.06.014
  18. Silvert, P.; Urbina, R. H.; Duvauchelle, N.; Vijayakrishnan, V.; Elhsissen, K. T. J. Mater. Chem. 1996, 6, 573. https://doi.org/10.1039/jm9960600573
  19. Stober, W.; Fink, A. J. Colloid. Interf. Sci. 1968, 26, 68.
  20. Imhof, A.; Megens, M.; Engelberts, J. J.; de Lang, D. T. N.; Sprik, R.; Vos, W. L. J. Phys. Chem. B 1999, 103, 1408. https://doi.org/10.1021/jp983241q
  21. Wiley, B.; Sun, Y.; Xia, Y. Acc. Chem. Res. 2007, 40, 1067. https://doi.org/10.1021/ar7000974
  22. Im, S. H.; Lee, Y. T.; Wiley, B.; Xia, Y. Angew. Chem. Int. Ed. 2005, 44, 2154. https://doi.org/10.1002/anie.200462208
  23. Sun, Y.; Xia, Y. Science 2002, 298, 2176. https://doi.org/10.1126/science.1077229
  24. Zhang, Z.; Zhao, B.; Hu, L. J. Solid State Chem. 1996, 121, 105. https://doi.org/10.1006/jssc.1996.0015
  25. Huang, H. H.; Ni, X. P.; Loy, G. L.; Chew, C. H.; Tan, K. L.; Loh, F. C.; Deng, J. F.; Xu, G. Q. Langmuir 1996, 12, 909. https://doi.org/10.1021/la950435d
  26. Graf, C.; Vossen, D. L. J.; Imhof, A.; Blaaderen, A. Langmuir 2003, 19, 6693. https://doi.org/10.1021/la0347859
  27. Ung, T.; Liz-Marzan, L. M.; Mulvaney, P. Langmuir 1998, 14, 3740. https://doi.org/10.1021/la980047m
  28. Blaaderen, A.; Vrij, A. J. Colloid. Interf. Sci. 1993, 156, 1. https://doi.org/10.1006/jcis.1993.1073
  29. Blaaderen, A.; Vrij, A. J. Non-Cryst. Solids 1992, 149, 161. https://doi.org/10.1016/0022-3093(92)90064-Q
  30. Lakowicz, J. R. Anal. Biochem. 2001, 298, 1. https://doi.org/10.1006/abio.2001.5377
  31. Maeda, T.; Nagahara, T.; Aida, M.; Ishibashi, T. J. Raman Spectrosc. 2008, 39, 1694. https://doi.org/10.1002/jrs.2131
  32. Geddes, C. D.; Lakowicz, J. R. J. Fluorescence 2002, 12, 121. https://doi.org/10.1023/A:1016875709579
  33. Xia, Y.; Hallas, N. MRS Bulletin 2005, 30, 338. https://doi.org/10.1557/mrs2005.96

Cited by

  1. Nanoflares for Affinity Biosensing via Target-Induced Structure Switching of Aptamer vol.6, pp.3, 2014, https://doi.org/10.1021/am4049942
  2. Laser-induced transformation of supramolecular complexes: approach to controlled formation of hybrid multi-yolk-shell Au-Ag@a-C:H nanostructures vol.5, pp.1, 2015, https://doi.org/10.1038/srep12027
  3. Core-Shell Nanoparticles: Plasmonic Enhancement of Fluorescence and Singlet Oxygen Production vol.92, pp.2, 2016, https://doi.org/10.1111/php.12557
  4. Study on the Metal-Enhanced Fluorescence of Dyes by Ag-Polyvinylpyrrolidone Nanocomposites vol.33, pp.1661-9897, 2015, https://doi.org/10.4028/www.scientific.net/JNanoR.33.1
  5. Ag Nanowire-Ag Nanoparticle Hybrids for the Highly Enhanced Fluorescene Detection of Protoporphyrin IX Based on Surface Plasmon-Enhanced Fluorescence vol.34, pp.12, 2016, https://doi.org/10.1002/cjoc.201600528
  6. Oligothiophene-modified silver/silica core-shell nanoparticles for inhibiting open-circuit voltage drop and aggregation in polymer solar cells vol.2, pp.37, 2014, https://doi.org/10.1039/c4ta02763a