DOI QR코드

DOI QR Code

Modified Shrinking Core Model for Atomic Layer Deposition of TiO2 on Porous Alumina with Ultrahigh Aspect Ratio

  • Park, Inhye (Department of Chemical Engineering, Konkuk University) ;
  • Leem, Jina (Department of Chemical Engineering, Konkuk University) ;
  • Lee, Hoo-Yong (Department of Chemical Engineering, Konkuk University) ;
  • Min, Yo-Sep (Department of Chemical Engineering, Konkuk University)
  • Received : 2012.10.23
  • Accepted : 2012.11.19
  • Published : 2013.02.20

Abstract

When atomic layer deposition (ALD) is performed on a porous material by using an organometallic precursor, minimum exposure time of the precursor for complete coverage becomes much longer since the ALD is limited by Knudsen diffusion in the pores. In the previous report by Min et al. (Ref. 23), shrinking core model (SCM) was proposed to predict the minimum exposure time of diethylzinc for ZnO ALD on a porous cylindrical alumina monolith. According to the SCM, the minimum exposure time of the precursor is influenced by volumetric density of adsorption sites, effective diffusion coefficient, precursor concentration in gas phase and size of the porous monolith. Here we modify the SCM in order to consider undesirable adsorption of byproduct molecules. $TiO_2$ ALD was performed on the cylindrical alumina monolith by using titanium tetrachloride ($TiCl_4$) and water. We observed that the byproduct (i.e., HCl) of $TiO_2$ ALD can chemically adsorb on adsorption sites, unlike the behavior of the byproduct (i.e., ethane) of ZnO ALD. Consequently, the minimum exposure time of $TiCl_4$ (~16 min) was significantly much shorter than that (~71 min) of DEZ. The predicted minimum exposure time by the modified SCM well agrees with the observed time. In addition, the modified SCM gives an effective diffusion coefficient of $TiCl_4$ of ${\sim}1.78{\times}10^{-2}\;cm^2/s$ in the porous alumina monolith.

Keywords

References

  1. Suntola, T.; Antson, J. US Patent 1977, 4,058,430.
  2. Suntola, T. Thin Solid Films 1992, 216, 84. https://doi.org/10.1016/0040-6090(92)90874-B
  3. Suntola, T., In Handbook of Crystal Growth; Hurle, D. T. J., Ed.; Elsevier: Amsterdam, 1994; Vol. 3, Chapter 14.
  4. Ritala, M.; Leskela, M. Nanotechnology 1999, 10, 19. https://doi.org/10.1088/0957-4484/10/1/005
  5. Ritala, M.; Leskela, M. In Handbook of Thin Film Materials; Nalwa, H. S., Ed.; Academic Press: San Diego 2002, Vol. 1, Chapter 2.
  6. Leskela, M.; Ritala, M. Angew. Chem. Int. Ed. 2003, 42, 5548. https://doi.org/10.1002/anie.200301652
  7. George, S. M. Chem. Rev. 2010, 110, 111. https://doi.org/10.1021/cr900056b
  8. Lindblad, M.; Lindfors, L. P.; Suntola, T. Catal. Lett. 1994, 27, 323. https://doi.org/10.1007/BF00813919
  9. Rautiainen, A.; Lindblad, M.; Backman, L. B.; Puurunen, R. L. Phys. Chem. Chem. Phys. 2002, 4, 2466. https://doi.org/10.1039/b201168a
  10. Min, Y. S.; Bae, E. J.; Jeong, K. S.; Cho, Y. J.; Lee, J. H.; Choi, W. B. Adv. Mater. 2003, 15, 1019. https://doi.org/10.1002/adma.200304452
  11. Min, Y. S.; Bae, E. J.; Song, J.; Park, J. B.; Park, N. J.; Park, W.; Hwang, C. S. Appl. Phys. Lett. 2007, 90, 263104. https://doi.org/10.1063/1.2745226
  12. Min, Y. S.; Lee, I. H.; Lee, Y. H.; Hwang, C. S. CrystEngComm. 2011, 13, 3451. https://doi.org/10.1039/c0ce00875c
  13. Gordon, R. G.; Hausmann, D.; Kim, E.; Shepard, J. Chem. Vap. Deposition 2003, 9, 73. https://doi.org/10.1002/cvde.200390005
  14. Elam, J. W.; Routkevitch, D.; Mardilovich, P. P.; George, S. M. Chem. Mater. 2003, 15, 3507. https://doi.org/10.1021/cm0303080
  15. Kucheyev, S. O.; Biener, J.; Wang, Y. M.; Baumann, T. F.; Wu, K. J.; van Buuren, T.; Hamza, A. V.; Satcher, J. H., Jr.; Elam, J. W.; Pellin, M. J. Appl. Phys. Lett. 2005, 86, 083108. https://doi.org/10.1063/1.1870122
  16. Baumann, T. F.; Biener, J.; Wang, Y. M.; Kucheyev, S. O.; Nelson, E. J.; Satcher, J. H., Jr.; Elam, J. W.; Pellin, M. J.; Hamza, A. V. Chem. Mater. 2006. 18, 6106. https://doi.org/10.1021/cm061752g
  17. Elam, J. W.; Libera, J. A.; Pellin, M. J.; Zinovev, A. V.; Greene, J. P.; Nolen, J. A. Appl. Phys. Lett. 2006, 89, 053124. https://doi.org/10.1063/1.2245216
  18. Elam, J. W.; Libera, J. A.; Pellin, M. J.; Stair, P. C. Appl. Phys. Lett. 2007, 91, 243105. https://doi.org/10.1063/1.2822897
  19. Biener, J.; Theodore, F. B.; Wang, Y.; Nelson, E. J.; Kucheyev, S. O.; Hamza, A.; Kemell, M.; Ritala, M.; Leskela, M. Nanotechnology 2007, 18, 055303. https://doi.org/10.1088/0957-4484/18/5/055303
  20. Libera, J. A.; Elam, J. W.; Pellin, M. J. Thin Solid Films 2008, 516, 6158. https://doi.org/10.1016/j.tsf.2007.11.044
  21. Kucheyev, S. O.; Biener J.; Baumann, T. F.; Wang, Y. M.; Hamza, A. V.; Li, Z.; Lee, D. K.; Gordon, R. G. Langmuir 2008, 24, 943. https://doi.org/10.1021/la7018617
  22. Kim, J. Y.; Kim, J. H.; Ahn, J. H.; Park, P. K.; Kang, S. W. J. Electrochem. Soc. 2007, 154, H1008. https://doi.org/10.1149/1.2789802
  23. Lee, H. Y.; An, C. J.; Piao, S. J.; Ahn, D. Y.; Kim, M. T.; Min, Y. S. J. Phys. Chem. C 2010, 114, 18601. https://doi.org/10.1021/jp106945n
  24. Marero, R.; Rahtu, A.; Ritala, M. Chem. Mater. 2001, 13, 4506. https://doi.org/10.1021/cm011046+
  25. Kummert, R. In Ph.D. Thesis; Swiss Fedral Institute of Technology; Zurich, 1979.
  26. Puurunen, R. L.; Lindblad, M.; Root, A.; Krause, A. O. I. Phys. Chem. Chem. Phys. 2001, 3, 1093. https://doi.org/10.1039/b007249o
  27. Atkins, P.; De Paula, J., In Physical Chemistry, 8th Ed; Oxford University Press; Oxford, 2006; p 759.
  28. Petersen, E. E. In Chemical Reaction Analysis; Prentice-Hall: New Jersey, 1965; p 115.
  29. Forgler, H. S. In Elements of Chemical Reaction Engineering, 4th Ed; Pearson; New Jersey, 2006; p 815.
  30. Hu, Z.; Turner, C. H. J. Phys. Chem. B 2006, 110, 8337. https://doi.org/10.1021/jp060367b

Cited by

  1. nanochannel arrays for photovoltaic applications vol.7, pp.18, 2015, https://doi.org/10.1039/C5NR00202H
  2. Titanium dioxide thin films by atomic layer deposition: a review vol.32, pp.9, 2017, https://doi.org/10.1088/1361-6641/aa78ce
  3. Toward 3D Thin-Film Batteries: Optimal Current-Collector Design and Scalable Fabrication of TiO2 Thin-Film Electrodes vol.2, pp.3, 2013, https://doi.org/10.1021/acsaem.8b01905