DOI QR코드

DOI QR Code

Direct Electrochemistry and Electrocatalysis of Myoglobin with CoMoO4 Nanorods Modified Carbon Ionic Liquid Electrode

  • Zhao, Zengying (School of Science, National Laboratory of Mineral Materials, China University of Geosciences) ;
  • Cao, Lili (College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology) ;
  • Hu, Anhui (College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology) ;
  • Zhang, Weili (College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology) ;
  • Ju, Xiaomei (College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology) ;
  • Zhang, Yuanyuan (College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology) ;
  • Sun, Wei (College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology)
  • Received : 2012.10.19
  • Accepted : 2012.11.19
  • Published : 2013.02.20

Abstract

By using ionic liquid 1-hexylpyridinium hexafluorophosphate ($HPPF_6$) based carbon ionic liquid electrode (CILE) as the substrate electrode, a $CoMoO_4$ nanorods and myoglobin (Mb) composite was casted on the surface of CILE with chitosan (CTS) as the film forming material to obtain the modified electrode (CTS/$CoMoO_4$-Mb/CILE). Spectroscopic results indicated that Mb retained its native structures without any conformational changes after mixed with $CoMoO_4$ nanorods and CTS. Electrochemical behaviors of Mb on the electrode were carefully investigated by cyclic voltammetry with a pair of well-defined redox peaks from the heme Fe(III)/Fe(II) redox center of Mb appeared, which indicated that direct electron transfer between Mb and CILE was realized. Electrochemical parameters such as the electron transfer number (n), charge transfer coefficient (${\alpha}$) and electron transfer rate constant ($k_s$) were estimated by cyclic voltammetry with the results as 1.09, 0.53 and 1.16 $s^{-1}$, respectively. The Mb modified electrode showed good electrocatalytic ability toward the reduction of trichloroacetic acid in the concentration range from 0.1 to 32.0 mmol $L^{-1}$ with the detection limit as 0.036 mmol $L^{-1}$ ($3{\sigma}$), and the reduction of $H_2O_2$ in the concentration range from 0.12 to 397.0 ${\mu}mol\;L^{-1}$ with the detection limit as 0.0426 ${\mu}mol\;L^{-1}$ ($3{\sigma}$).

Keywords

References

  1. Zhang, Z.; Chouchane, S.; Magliozzo, R. S.; Rusling, J. F. Anal. Chem. 2002, 74, 163. https://doi.org/10.1021/ac010701u
  2. Armstrong, F. A.; Heering, H. A.; Hirst, J. Chem. Soc. Rev. 1997, 26, 169. https://doi.org/10.1039/cs9972600169
  3. Rusling, J. F. Acc. Chem. Res. 1998, 31, 363. https://doi.org/10.1021/ar970254y
  4. Heller, A. Acc. Chem. Res. 1990, 23, 128. https://doi.org/10.1021/ar00173a002
  5. Chen, S.; Tseng, C. Electrochim. Acta 2004, 49, 1903. https://doi.org/10.1016/j.electacta.2003.12.019
  6. Lojou, E.; Giudici-Orticoni, M. T.; Bianco, P. J. Electroanal. Chem. 2005, 579, 199. https://doi.org/10.1016/j.jelechem.2005.02.009
  7. Sun, W.; Guo, Y. Q.; Li, T. T.; Ju, X. M.; Lou, J.; Ruan, C. X. Electrochim. Acta 2012, 75, 381. https://doi.org/10.1016/j.electacta.2012.05.018
  8. Hu, Y.; Sun, H.; Hu, N. F. J. Colloid Interface Sci. 2007, 314, 131. https://doi.org/10.1016/j.jcis.2007.05.057
  9. Wang, J. X.; Li, M. X.; Shi, Z. J.; Li, N. Q.; Gu, Z. N. Anal. Chem. 2008, 74, 1993.
  10. Ferapontov, E. E.; Shleev, S.; Ruzgas, T.; Stoica, L.; Christenson, A.; Tkac, J.; Yaropolov, A. I.; Gorton, L. Perspectives in Bioanalysis 2005, 1, 1. https://doi.org/10.1016/S1871-0069(05)01001-3
  11. Wang, Y.; Qian, W. P.; Tan, Y.; Ding, S. H.; Zhang, H. Q. Talanta 2007, 72, 1134. https://doi.org/10.1016/j.talanta.2007.01.026
  12. Ruan, C.X.; Li, T. T.; Niu, Q. J.; Lu, M.; Lou, J.; Gao, W. M.; Sun, W. Electrochim. Acta 2012, 64, 183. https://doi.org/10.1016/j.electacta.2012.01.005
  13. Sun, J. Y.; Huang, K. J.; Zhao, S. F.; Fan, Y.; Wu, Z. W. Bioelectrochemistry 2011, 82, 125. https://doi.org/10.1016/j.bioelechem.2011.06.007
  14. Ma, Y. H.; Zhan, G. Q.; Ma, M.; Wang, X.; Li, C. Bioelectrochemistry 2012, 84, 6. https://doi.org/10.1016/j.bioelechem.2011.09.003
  15. Kichambare, P. D.; Kharat, R. B. Proceedings of the National Seminar SERD, Kolhapur, 1987, India, 223.
  16. Rodriguez, J. A.; Chaturvedi, S.; Hanson, J. C. J. Phys. Chem. B 1998, 102, 1347. https://doi.org/10.1021/jp972137q
  17. Pandey, P. K.; Bhave, N. S.; Kharat, R. B. Indian. J. Pure Appl. Phys. 2006, 44, 52.
  18. Peng, C.; Gao, L.; Yang, S. W.; Sun, J. Chem. Commun. 2008, 5601.
  19. Ding, Y.; Wang, Y.; Min, Y. L.; Zhang, W.; Yu, S. H. Inorg. Chem. 2008, 47, 7813. https://doi.org/10.1021/ic8007975
  20. Pei, S. P.; Zhang, B.; Jiao, K.; Bao, R. L.; Yue, B.; He, H. Y. Acta Phys. Chim. Sin. 2008, 24, 561. https://doi.org/10.1016/S1872-1508(08)60022-4
  21. Xiao, W.; Chen, J. S.; Li, C. M.; Xu, R.; Lou, X. W. Chem. Mater. 2010, 22, 746. https://doi.org/10.1021/cm9012014
  22. Mai, L. Q.; Yang, F.; Zhao, Y. L.; Xu, X.; Xu, L.; Luo, Y. Z. Nat. Commun. 2011, 2, 381. https://doi.org/10.1038/ncomms1387
  23. Opallo, M.; Lesniewski, A. J. Electroanal. Chem. 2011, 656, 2. https://doi.org/10.1016/j.jelechem.2011.01.008
  24. Hiroyuki, O. Electrochemical Aspects of Ionic Liquids; John Wiley & Sons Inc.: America, 2005.
  25. Muhammad, J. A. S.; Angel, A. J. T. Biosens. Bioelectron. 2011, 26, 1775. https://doi.org/10.1016/j.bios.2010.08.064
  26. Maleki, N.; Safavi, A.; Tajabadi, F. Anal. Chem. 2006, 78, 3820. https://doi.org/10.1021/ac060070+
  27. Sun, W.; Li, Y. Z.; Duan, Y. Y.; Jiao, K. Biosens. Bioelectron. 2008, 24, 994. https://doi.org/10.1016/j.bios.2008.08.007
  28. Sun, W.; Li, Y. Z.; Yang, M. X.; Liu, S. F.; Jiao, K. Electrochem. Commun. 2008, 10, 298. https://doi.org/10.1016/j.elecom.2007.12.012
  29. Safavi, A.; Maleki, N.; Farjami, E. Biosens. Bioelectron. 2009, 24, 1655. https://doi.org/10.1016/j.bios.2008.08.040
  30. Lu, X. B.; Hu, J. Q.; Yao, X.; Wang, Z. P.; Li, J. H. Biomacromolecules 2006, 7, 975. https://doi.org/10.1021/bm050933t
  31. George, P.; HanaCoa, C. Biochemistry 1953, 55, 236.
  32. Bindhu, L. V.; Abraham, E. J. Appl. Polym. Sci. 2003, 88, 1456. https://doi.org/10.1002/app.11815
  33. PeCoche, C.; Arguelles, W.; PeCoche, H. Macromol. Biosci. 2003, 3, 511. https://doi.org/10.1002/mabi.200300019
  34. Sun, W.; Wang, D. D.; Gao, R. F.; Jiao, K. Electrochem. Commun. 2007, 9, 1159. https://doi.org/10.1016/j.elecom.2007.01.003
  35. Bard, A. J.; Faulkner, L. R. Electrochemical Methods, Wiley: New York, 1980.
  36. Laviron, E. J. Electroanal. Chem. 1974, 52, 355. https://doi.org/10.1016/S0022-0728(74)80448-1
  37. Laviron, E. J. Electroanal. Chem. 1979, 101, 19. https://doi.org/10.1016/S0022-0728(79)80075-3
  38. Moghaddam, A. B.; Ganjali, M. R.; Dinarvand, R. Biophy. Chem. 2008, 134, 25. https://doi.org/10.1016/j.bpc.2008.01.001
  39. Liu, C. Y.; Hu, J. M. Biosens. Bioelectron. 2009, 24, 2149. https://doi.org/10.1016/j.bios.2008.11.007
  40. Kamin, R. A.; Wilson, G. S. Anal. Chem. 1980, 52, 1198. https://doi.org/10.1021/ac50058a010
  41. Gao, R. F.; Zheng, J. B. Electrochem. Commun. 2009, 11, 1527. https://doi.org/10.1016/j.elecom.2009.05.046
  42. Sun, W.; Li, X. Q.; Qin, P.; Jiao, K. J. Phys. Chem. C 2009, 113, 11294. https://doi.org/10.1021/jp8114594
  43. Li, X. Q.; Zhao, R. J.; Wang, Y.; Sun, X. Y.; Sun, W.; Zhao, C. Z.; Jiao, K. Electrochim. Acta 2010, 55, 2173. https://doi.org/10.1016/j.electacta.2009.11.052
  44. Zhang, Y. H.; Chen, X.; Yang, W. S. Sens. Actuators B 2008, 130, 682. https://doi.org/10.1016/j.snb.2007.10.034
  45. Sun, W.; Li, X. Q.; Wang, Y.; Li, X.; Zhao, C. Z.; Jiao, K. Bioelectrochemistry 2009, 75, 170. https://doi.org/10.1016/j.bioelechem.2009.03.012
  46. Guo, W.; Lu, H. Y.; Hu, N. F. Electrochim. Acta 2006, 52, 123. https://doi.org/10.1016/j.electacta.2006.04.002
  47. Liang, R. P.; Deng, M. Q.; Cui, S. G.; Chen, H.; Qiu, J. D. Mater. Res. Bull. 2010, 45, 1855. https://doi.org/10.1016/j.materresbull.2010.09.016
  48. Dai, Z. H.; Xu, X. X.; Ju, H. X. Anal. Biochem. 2004, 332, 23. https://doi.org/10.1016/j.ab.2004.03.067
  49. Dai, Z.; Xiao, Y.; Yu, X. Z.; Mai, Z. B.; Zhao, X. J.; Zou, X. Y. Biosens. Bioelectron. 2009, 24, 1629. https://doi.org/10.1016/j.bios.2008.08.032
  50. Zhang, L.; Tian, D. B.; Zhu, J. J. Bioelectrochemistry 2008, 74, 157. https://doi.org/10.1016/j.bioelechem.2008.07.003
  51. Wang, G. X.; Liu, Y.; Hu, N. F. Electrochim. Acta 2007, 53, 2071. https://doi.org/10.1016/j.electacta.2007.09.013

Cited by

  1. Cu3Mo2O9 nanosheet incorporated with hemoglobin on carbon ionic liquid electrode for the direct electrochemistry and electrocatalysis vol.11, pp.2, 2014, https://doi.org/10.1007/s13738-013-0312-7
  2. Gold nanoparticles-reduced graphene oxide based electrochemical immunosensor for the cardiac biomarker myoglobin vol.183, pp.5, 2016, https://doi.org/10.1007/s00604-016-1803-x