DOI QR코드

DOI QR Code

Ultrafast Excited State Intramolecular Proton Transfer Dynamics of 1-Hydroxyanthraquinone in Solution

  • Ryu, Jaehyun (Department of Chemistry, Pohang University of Science and Technology) ;
  • Kim, Hyun Woo (Institute of Theoretical and Computational Chemistry, Department of Chemistry, Pohang University of Science and Technology) ;
  • Kim, Myung Soo (Department of Chemistry, Seoul National University) ;
  • Joo, Taiha (Department of Chemistry, Pohang University of Science and Technology)
  • Received : 2012.11.01
  • Accepted : 2012.11.16
  • Published : 2013.02.20

Abstract

Proton transfer reaction is one of the most fundamental processes in chemistry and life science. Excited state intramolecular proton transfer (ESIPT) has been studied as a model system of the proton transfer, since it can be conveniently initiated by light. We report ESIPT reaction dynamic of 1-hydroxy-anthraquione (1-HAQ) in solution by highly time-resolved fluorescence. ESIPT time of 1-HAQ is determined to be $45{\pm}10$ fs directly from decay of the reactant fluorescence and rise of the product fluorescence. High time resolution allows observation of the coherent vibrational wave packet motion in the excited state of the reaction product tautomer. The coherently excited vibrational mode involves large displacement of the atoms, which shortens the distance between the proton donor and the acceptor. With the theoretical analysis, we propose that the ESIPT of 1-HAQ proceeds barrierlessly with assistance of the skeletal vibration, which in turn becomes excited coherently by the ESIPT reaction.

Keywords

References

  1. Ernsting, N. P. J. Phys. Chem. 1985, 89, 4932. https://doi.org/10.1021/j100269a010
  2. Elsaesser, T.; Kaiser, W. Chem. Phys. Lett. 1986, 128, 231. https://doi.org/10.1016/0009-2614(86)80331-1
  3. Weller, A. Prog. React. Kinet. 1961, 1, 188.
  4. Takeuchi, S.; Tahara, T. J. Phys. Chem. A 2005, 109, 10199. https://doi.org/10.1021/jp0519013
  5. Kim, C. H.; Joo, T. Phys. Chem. Chem. Phys. 2009, 11, 10266. https://doi.org/10.1039/b915768a
  6. Lochbrunner, S.; Stock, K.; Riedle, E. J. Mol. Struct. 2004, 700, 13. https://doi.org/10.1016/j.molstruc.2004.01.038
  7. Lochbrunner, S.; Wurzer, A. J.; Riedle, E. J. Chem. Phys. 2000, 112, 10699. https://doi.org/10.1063/1.481711
  8. Lochbrunner, S.; Wurzer, A. J.; Riedle, E. J. Phys. Chem. A 2003, 107, 10580. https://doi.org/10.1021/jp035203z
  9. Schriever, C.; Barbatti, M.; Stock, K.; Aquino, A. J. A.; Tunega, D.; Lochbrunner, S.; Riedle, E.; de Vivie-Riedle, R.; Lischka, H. Chem. Phys. 2008, 347, 446. https://doi.org/10.1016/j.chemphys.2007.10.021
  10. Schriever, C.; Lochbrunner, S.; Ofial, A. R.; Riedle, E. Chem. Phys. Lett. 2011, 503, 61. https://doi.org/10.1016/j.cplett.2010.12.087
  11. Marzocchi, M. P.; Mantini, A. R.; Casu, M.; Smulevich, G. J. Chem. Phys. 1998, 108, 534. https://doi.org/10.1063/1.475417
  12. Cho, S. H.; Huh, H.; Kim, H. M.; Kim, C. I.; Kim, N. J.; Kim, S. K. J. Chem. Phys. 2005, 122, 034304. https://doi.org/10.1063/1.1829977
  13. Smith, T. P.; Zaklika, K. A.; Thakur, K.; Walker, G. C.; Tominaga, K.; Barbara, P. F. J. Phys. Chem. 1991, 95, 10465. https://doi.org/10.1021/j100178a038
  14. Fain, V. Y.; Zaitsev, B. E.; Ryabov, M. A. Russ. J. Org. Chem. 2006, 42, 1469.
  15. Cho, D. W.; Kim, S. H.; Yoon, M.; Jeoung, S. C. Chem. Phys. Lett. 2004, 391, 314. https://doi.org/10.1016/j.cplett.2004.05.013
  16. Cho, D. W.; Song, K. D.; Park, S. K.; Jeon, K. S.; Yoon, M. Bull. Korean Chem. Soc. 2007, 28, 647. https://doi.org/10.5012/bkcs.2007.28.4.647
  17. Choi, J. R.; Jeoung, S. C.; Cho, D. W. Bull. Korean Chem. Soc. 2003, 24, 1675. https://doi.org/10.5012/bkcs.2003.24.11.1675
  18. Choi, J. R.; Jeoung, S. C.; Cho, D. W. Chem. Phys. Lett. 2004, 385, 384. https://doi.org/10.1016/j.cplett.2004.01.011
  19. Yi, P. G.; Liang, Y. H. Chem. Phys. 2006, 322, 382. https://doi.org/10.1016/j.chemphys.2005.09.019
  20. Arzhantsev, S. Y.; Takeuchi, S.; Tahara, T. Chem. Phys. Lett. 2000, 330, 83. https://doi.org/10.1016/S0009-2614(00)01087-3
  21. Park, J. S.; Joo, T. J. Chem. Phys. 2004, 120, 5269. https://doi.org/10.1063/1.1647534
  22. Wise, F. W.; Rosker, M. J.; Tang, C. L. J. Chem. Phys. 1987, 86, 2827. https://doi.org/10.1063/1.452032
  23. Rhee, H.; Joo, T. Opt. Lett. 2005, 30, 96. https://doi.org/10.1364/OL.30.000096
  24. Kim, C. H.; Joo, T. Opt. Express 2008, 16, 20742. https://doi.org/10.1364/OE.16.020742
  25. Kim, C. H.; Chang, D. W.; Kim, S.; Park, S. Y.; Joo, T. Chem. Phys. Lett. 2008, 450, 302. https://doi.org/10.1016/j.cplett.2007.11.047
  26. Barkhuijsen, H.; De Beer, R.; Bovee, W. M. M. J.; Van Ormondt, D. J. Magn. Reson. 1985, 61, 465.
  27. Reimers, J. R. J. Chem. Phys. 2001, 115, 9103. https://doi.org/10.1063/1.1412875
  28. Kim, S. Y.; Kim, C. H.; Park, M.; Ko, K. C.; Lee, J. Y.; Joo, T. J. Phys. Chem. Lett. 2012, 3, 2761. https://doi.org/10.1021/jz301141d
  29. Frisch, M. J. et al. Gaussian 03, Revision C.02; Gaussian, Inc.: Wallingford, CT, 2003.
  30. Park, J. W.; Kim, H. W.; Song, C.-I.; Rhee, Y. M. J. Chem. Phys. 2011, 135, 014107. https://doi.org/10.1063/1.3605302
  31. Higashi, M.; Saito, S. J. Phys. Chem. Lett. 2011, 2, 2366.
  32. Merrick, J. P.; Moran, D.; Radom, L. J. Phys. Chem. A 2007, 111, 11683. https://doi.org/10.1021/jp073974n

Cited by

  1. Identification of an emitting molecular species by time-resolved fluorescence applied to the excited state dynamics of pigment yellow 101 vol.16, pp.20, 2014, https://doi.org/10.1039/C3CP54546F
  2. Confinement effect on the photophysics of ESIPT fluorophores vol.4, pp.14, 2016, https://doi.org/10.1039/C5TC03245H
  3. Ultrafast Elementary Photochemical Processes of Organic Molecules in Liquid Solution vol.117, pp.16, 2017, https://doi.org/10.1021/acs.chemrev.6b00491
  4. Ultrafast Intramolecular Proton Transfer of Alizarin Investigated by Femtosecond Stimulated Raman Spectroscopy vol.121, pp.16, 2017, https://doi.org/10.1021/acs.jpcb.6b12408
  5. Photoinduced electron transfer across an organic molecular wall: octa acid encapsulated ESIPT dyes as electron donors vol.16, pp.6, 2017, https://doi.org/10.1039/C7PP00065K
  6. Coherent intermolecular proton transfer in the acid–base reaction of excited state pyranine vol.19, pp.28, 2017, https://doi.org/10.1039/C7CP01944K
  7. Ultrafast investigation of photoinduced charge transfer in aminoanthraquinone pharmaceutical product vol.7, pp.1, 2017, https://doi.org/10.1038/srep43419
  8. ]pyridine (TTP) derivatives: theoretical insights pp.1463-9084, 2018, https://doi.org/10.1039/C8CP04730H
  9. Ring Closure Reaction Pathway of a Diarylethene in Solution Using Femtosecond Time-resolved Fluorescence Spectra pp.12295949, 2019, https://doi.org/10.1002/bkcs.11689
  10. Photophysical Model of 10-Hydroxybenzo[h]quinoline: Internal Conversion and Excited State Intramolecular Proton Transfer vol.35, pp.3, 2014, https://doi.org/10.5012/bkcs.2014.35.3.881
  11. Excited State Intramolecular Proton Transfer of 1-Hydroxyanthraquinone vol.28, pp.5, 2013, https://doi.org/10.1063/1674-0068/28/cjcp1504078
  12. Excited state intramolecular proton transfer of 1,2-dihydroxyanthraquinone by femtosecond transient absorption spectroscopy vol.15, pp.11, 2013, https://doi.org/10.1016/j.cap.2015.08.017
  13. Combined TDDFT and AIM Insights into Photoinduced Excited State Intramolecular Proton Transfer (ESIPT) Mechanism in Hydroxyl- and Amino-Anthraquinone Solution vol.7, pp.None, 2017, https://doi.org/10.1038/s41598-017-14094-5
  14. Molecular Dynamics of Excited State Intramolecular Charge Transfer in Solution by Coherent Nuclear Wave Packets vol.20, pp.11, 2013, https://doi.org/10.1002/cphc.201801103
  15. Elucidating Inner Workings of Naturally Sourced Organic Optoelectronic Materials with Ultrafast Spectroscopy vol.27, pp.71, 2013, https://doi.org/10.1002/chem.202102766