References
- Ernsting, N. P. J. Phys. Chem. 1985, 89, 4932. https://doi.org/10.1021/j100269a010
- Elsaesser, T.; Kaiser, W. Chem. Phys. Lett. 1986, 128, 231. https://doi.org/10.1016/0009-2614(86)80331-1
- Weller, A. Prog. React. Kinet. 1961, 1, 188.
- Takeuchi, S.; Tahara, T. J. Phys. Chem. A 2005, 109, 10199. https://doi.org/10.1021/jp0519013
- Kim, C. H.; Joo, T. Phys. Chem. Chem. Phys. 2009, 11, 10266. https://doi.org/10.1039/b915768a
- Lochbrunner, S.; Stock, K.; Riedle, E. J. Mol. Struct. 2004, 700, 13. https://doi.org/10.1016/j.molstruc.2004.01.038
- Lochbrunner, S.; Wurzer, A. J.; Riedle, E. J. Chem. Phys. 2000, 112, 10699. https://doi.org/10.1063/1.481711
- Lochbrunner, S.; Wurzer, A. J.; Riedle, E. J. Phys. Chem. A 2003, 107, 10580. https://doi.org/10.1021/jp035203z
- Schriever, C.; Barbatti, M.; Stock, K.; Aquino, A. J. A.; Tunega, D.; Lochbrunner, S.; Riedle, E.; de Vivie-Riedle, R.; Lischka, H. Chem. Phys. 2008, 347, 446. https://doi.org/10.1016/j.chemphys.2007.10.021
- Schriever, C.; Lochbrunner, S.; Ofial, A. R.; Riedle, E. Chem. Phys. Lett. 2011, 503, 61. https://doi.org/10.1016/j.cplett.2010.12.087
- Marzocchi, M. P.; Mantini, A. R.; Casu, M.; Smulevich, G. J. Chem. Phys. 1998, 108, 534. https://doi.org/10.1063/1.475417
- Cho, S. H.; Huh, H.; Kim, H. M.; Kim, C. I.; Kim, N. J.; Kim, S. K. J. Chem. Phys. 2005, 122, 034304. https://doi.org/10.1063/1.1829977
- Smith, T. P.; Zaklika, K. A.; Thakur, K.; Walker, G. C.; Tominaga, K.; Barbara, P. F. J. Phys. Chem. 1991, 95, 10465. https://doi.org/10.1021/j100178a038
- Fain, V. Y.; Zaitsev, B. E.; Ryabov, M. A. Russ. J. Org. Chem. 2006, 42, 1469.
- Cho, D. W.; Kim, S. H.; Yoon, M.; Jeoung, S. C. Chem. Phys. Lett. 2004, 391, 314. https://doi.org/10.1016/j.cplett.2004.05.013
- Cho, D. W.; Song, K. D.; Park, S. K.; Jeon, K. S.; Yoon, M. Bull. Korean Chem. Soc. 2007, 28, 647. https://doi.org/10.5012/bkcs.2007.28.4.647
- Choi, J. R.; Jeoung, S. C.; Cho, D. W. Bull. Korean Chem. Soc. 2003, 24, 1675. https://doi.org/10.5012/bkcs.2003.24.11.1675
- Choi, J. R.; Jeoung, S. C.; Cho, D. W. Chem. Phys. Lett. 2004, 385, 384. https://doi.org/10.1016/j.cplett.2004.01.011
- Yi, P. G.; Liang, Y. H. Chem. Phys. 2006, 322, 382. https://doi.org/10.1016/j.chemphys.2005.09.019
- Arzhantsev, S. Y.; Takeuchi, S.; Tahara, T. Chem. Phys. Lett. 2000, 330, 83. https://doi.org/10.1016/S0009-2614(00)01087-3
- Park, J. S.; Joo, T. J. Chem. Phys. 2004, 120, 5269. https://doi.org/10.1063/1.1647534
- Wise, F. W.; Rosker, M. J.; Tang, C. L. J. Chem. Phys. 1987, 86, 2827. https://doi.org/10.1063/1.452032
- Rhee, H.; Joo, T. Opt. Lett. 2005, 30, 96. https://doi.org/10.1364/OL.30.000096
- Kim, C. H.; Joo, T. Opt. Express 2008, 16, 20742. https://doi.org/10.1364/OE.16.020742
- Kim, C. H.; Chang, D. W.; Kim, S.; Park, S. Y.; Joo, T. Chem. Phys. Lett. 2008, 450, 302. https://doi.org/10.1016/j.cplett.2007.11.047
- Barkhuijsen, H.; De Beer, R.; Bovee, W. M. M. J.; Van Ormondt, D. J. Magn. Reson. 1985, 61, 465.
- Reimers, J. R. J. Chem. Phys. 2001, 115, 9103. https://doi.org/10.1063/1.1412875
- Kim, S. Y.; Kim, C. H.; Park, M.; Ko, K. C.; Lee, J. Y.; Joo, T. J. Phys. Chem. Lett. 2012, 3, 2761. https://doi.org/10.1021/jz301141d
- Frisch, M. J. et al. Gaussian 03, Revision C.02; Gaussian, Inc.: Wallingford, CT, 2003.
- Park, J. W.; Kim, H. W.; Song, C.-I.; Rhee, Y. M. J. Chem. Phys. 2011, 135, 014107. https://doi.org/10.1063/1.3605302
- Higashi, M.; Saito, S. J. Phys. Chem. Lett. 2011, 2, 2366.
- Merrick, J. P.; Moran, D.; Radom, L. J. Phys. Chem. A 2007, 111, 11683. https://doi.org/10.1021/jp073974n
Cited by
- Identification of an emitting molecular species by time-resolved fluorescence applied to the excited state dynamics of pigment yellow 101 vol.16, pp.20, 2014, https://doi.org/10.1039/C3CP54546F
- Confinement effect on the photophysics of ESIPT fluorophores vol.4, pp.14, 2016, https://doi.org/10.1039/C5TC03245H
- Ultrafast Elementary Photochemical Processes of Organic Molecules in Liquid Solution vol.117, pp.16, 2017, https://doi.org/10.1021/acs.chemrev.6b00491
- Ultrafast Intramolecular Proton Transfer of Alizarin Investigated by Femtosecond Stimulated Raman Spectroscopy vol.121, pp.16, 2017, https://doi.org/10.1021/acs.jpcb.6b12408
- Photoinduced electron transfer across an organic molecular wall: octa acid encapsulated ESIPT dyes as electron donors vol.16, pp.6, 2017, https://doi.org/10.1039/C7PP00065K
- Coherent intermolecular proton transfer in the acid–base reaction of excited state pyranine vol.19, pp.28, 2017, https://doi.org/10.1039/C7CP01944K
- Ultrafast investigation of photoinduced charge transfer in aminoanthraquinone pharmaceutical product vol.7, pp.1, 2017, https://doi.org/10.1038/srep43419
- ]pyridine (TTP) derivatives: theoretical insights pp.1463-9084, 2018, https://doi.org/10.1039/C8CP04730H
- Ring Closure Reaction Pathway of a Diarylethene in Solution Using Femtosecond Time-resolved Fluorescence Spectra pp.12295949, 2019, https://doi.org/10.1002/bkcs.11689
- Photophysical Model of 10-Hydroxybenzo[h]quinoline: Internal Conversion and Excited State Intramolecular Proton Transfer vol.35, pp.3, 2014, https://doi.org/10.5012/bkcs.2014.35.3.881
- Excited State Intramolecular Proton Transfer of 1-Hydroxyanthraquinone vol.28, pp.5, 2013, https://doi.org/10.1063/1674-0068/28/cjcp1504078
- Excited state intramolecular proton transfer of 1,2-dihydroxyanthraquinone by femtosecond transient absorption spectroscopy vol.15, pp.11, 2013, https://doi.org/10.1016/j.cap.2015.08.017
- Combined TDDFT and AIM Insights into Photoinduced Excited State Intramolecular Proton Transfer (ESIPT) Mechanism in Hydroxyl- and Amino-Anthraquinone Solution vol.7, pp.None, 2017, https://doi.org/10.1038/s41598-017-14094-5
- Molecular Dynamics of Excited State Intramolecular Charge Transfer in Solution by Coherent Nuclear Wave Packets vol.20, pp.11, 2013, https://doi.org/10.1002/cphc.201801103
- Elucidating Inner Workings of Naturally Sourced Organic Optoelectronic Materials with Ultrafast Spectroscopy vol.27, pp.71, 2013, https://doi.org/10.1002/chem.202102766