DOI QR코드

DOI QR Code

Preparation of Silica Monoliths with Macropores and Mesopores and of High Specific Surface Area with Low Shrinkage using a Template Induced Method

  • Guo, Jianyu (Department of Chemistry, Shanghai Normal University) ;
  • Lu, Yan (School of Engineering and Innovation, Shanghai Institute of Technology) ;
  • Whiting, Roger (School of Applied Sciences, AUT University)
  • Received : 2012.10.08
  • Accepted : 2012.11.14
  • Published : 2013.02.20

Abstract

In this study we report a new method for the synthesis of a silica monolithic column bed with bimodal pores (throughpores and mesopores). The template induced synthesis method was used to direct bimodal pores simultaneously instead of the usual post base-treating method. Block polymer Pluronic F127 was chosen as a dual-function template to form hierarchically porous silica monolith with both macropores and mesopores. This is a simplification of the method of monolithic column preparation. Poly(ethylene glycol) was used as a partial substitute for F127 can effectively prevent shrinkage during the monolith aging process without losing much surface area (944 $m^2/g$ to 807 $m^2/g$). More importantly, the resultant material showed a much narrower mesopore size (centered at 6 nm) distribution than that made using only F127 as the template reagent, which helps the mass transfer process. The solvent washing method was used to remove the remaining organic template, and it was proved to be effective enough. The new synthesis method makes the fabrication of the silica monolithic column (especially capillary column) much easier. All the structure parameters indicate that monolith PFA05 prepared by the above method is a good material for separation, with the merits of much higher surface area than usual commercial HPLC silica particles, suitable mesopore volume, narrow mesopore size distribution, low shrinkage and it is easily prepared.

Keywords

References

  1. Nakanishi, K.; Soga, N. J. Non-Cryst. Solids. 1992, 139, 1. https://doi.org/10.1016/S0022-3093(05)80800-2
  2. Minakuchi, H.; Ishizuka, N.; Nakanishi, K.; Soga, N.; Tanaka, N. J. Chromatogr. A 1998, 828, 83. https://doi.org/10.1016/S0021-9673(98)00605-0
  3. Tanaka, N.; Kobayashi, H.; Nakanishi, K. et al. Anal. Chem. 2001, 73, 420A.
  4. Tanaka, N.; Kobayashi, H. Anal. Bioanal. Chem. 2003, 376, 298.
  5. Fujimoto, C. J. High Resol. Chromatogr. 2000, 23, 89. https://doi.org/10.1002/(SICI)1521-4168(20000101)23:1<89::AID-JHRC89>3.0.CO;2-5
  6. Kang, J. W.; Wistuba, D.; Schurig, V. Electrophoresis 2002, 23, 1116. https://doi.org/10.1002/1522-2683(200204)23:7/8<1116::AID-ELPS1116>3.0.CO;2-O
  7. Chen, Z.; Nishiyama, T.; Hobo, T. et al. Anal. Chim. Acta 2004, 501, 17. https://doi.org/10.1016/j.aca.2003.09.012
  8. Nakanishi, K. J. Porous Mater. 1997, 4, 67. https://doi.org/10.1023/A:1009627216939
  9. Ishizuka, N.; Nakanishi, K.; Hirao, K.; Tanaka, N. J. Sol-Gel Science and Technology 2000, 19, 371. https://doi.org/10.1023/A:1008770707572
  10. Ishizuka, N.; Minakuchi, H.; Nakanishi, K.; Tanaka, N. Anal. Chem. 2000, 72, 1275. https://doi.org/10.1021/ac990942q
  11. Minakuchi, K.; Nakanishi, N.; Soga, N.; Ishizuka, N.; Tanaka, N. J. Chromatogr. A 1998, 797, 121. https://doi.org/10.1016/S0021-9673(97)00947-3
  12. Nakanishi, K.; Shikata, H.; Ishizuka, N.; Koheiya, N.; Soga, N. J. High Resol. Chromatogr. 2000, 23, 106. https://doi.org/10.1002/(SICI)1521-4168(20000101)23:1<106::AID-JHRC106>3.0.CO;2-1
  13. Ishizuka, N.; Minakuchi, H.; Nakanishi, K.; Hirao, K.; Tanaka, N. Colloids and Surfaces A 2001, 187, 273. https://doi.org/10.1016/S0927-7757(01)00642-2
  14. Galarneau, A.; Iapichella, J.; Brunel, D.; Fajula, F.; Bayram-Hahn Z.; Unger, K.; Puy, G.; Demesmay, C.; Rocca, J. L. J. Sep. Sci. 2006, 29, 844. https://doi.org/10.1002/jssc.200500511
  15. Guiochon, G. J Chromatogr A 2007, 1168, 101. https://doi.org/10.1016/j.chroma.2007.05.090
  16. Ghanem, A.; Ikegami, T.; Tanaka, N. Chirality 2011, 23, 887. https://doi.org/10.1002/chir.21004
  17. Iwasaki, M.; Miwa, S.; Ikegami, T.; Tomita, M.; Tanaka, N.; Ishihama, Y. Anal. Chem. 2010, 82, 2616. https://doi.org/10.1021/ac100343q
  18. Sato, Y.; Nakanishi, K.; Hirao, K. et al. Colloids and Surfaces A 2001, 187, 117. https://doi.org/10.1016/S0927-7757(01)00626-4
  19. Minakuchi, H.; Nakanishi, K.; Soga, N.; Ishizuka, N.; Tanaka, N. J. Chromatogr. A 1997, 762, 135. https://doi.org/10.1016/S0021-9673(96)00944-2
  20. Alexandrldis, P.; Holzwarth, J. F.; Hattoa, T. A. Macromolecules 1994, 27, 2414. https://doi.org/10.1021/ma00087a009
  21. Wan, Y.; Shi, Y.; Zhao, D. Chem. Commun. 2007, 9, 897.

Cited by

  1. Preparation of a high specific surface area monolithic silica reversed phase chromatography column using a template induced method vol.38, pp.9, 2014, https://doi.org/10.1039/C4NJ00662C
  2. One-pot synthesis of a monolithic silica capillary column bed for μ-HPLC using a template induced method vol.6, pp.18, 2014, https://doi.org/10.1039/C4AY00927D
  3. Designed Meso-macroporous Silica Framework Impregnated with Copper Oxide Nanoparticles for Enhanced Catalytic Performance vol.10, pp.9, 2018, https://doi.org/10.1002/cctc.201701630
  4. One-pot synthesis of bimodal (macro-meso, micro-mesoporous) silica by polyHIPE: parameter studies vol.27, pp.1, 2020, https://doi.org/10.1007/s10934-019-00807-w