DOI QR코드

DOI QR Code

Chemical Substitution Effect on Energetic and Structural Differences between Ground and First Electronically Excited States of Thiophenoxyl Radicals

  • Received : 2012.10.28
  • Accepted : 2012.11.12
  • Published : 2013.02.20

Abstract

Effect of chemical substitution at the para-position of the thiophenoxyl radical has been theoretically investigated in terms of energetics, structures, charge densities and orbital shapes for the ground and first electronically excited states. It is found that the adiabatic energy gap increases when $CH_3$ or F is substituted at the para-position. This change is attributed to the stabilization of the ground state of thiophenoxyl radical through the electron-donating effect of F or $CH_3$ group as the charge or spin of the singly-occupied molecular orbital is delocalized over the entire molecule especially in the ground state whereas in the excited state it is rather localized on sulfur and little affected by chemical substitutions. Quantitative comparison of predictions based on four different quantum-mechanical calculation methods is presented.

Keywords

References

  1. Tseng, C.-M.; Lee, Y. T.; Ni, C.-K. The Journal of Chemical Physics 2004, 121, 2459. https://doi.org/10.1063/1.1781153
  2. Ashfold, M. N. R.; Devine, A. L.; Dixon, R. N.; King, G. A.; Nix, M. G. D.; Oliver, T. A. A. Proceedings of the National Academy of Sciences 2008, 105, 12701. https://doi.org/10.1073/pnas.0800463105
  3. Roberts, G. M.; Chatterley, A. S.; Young, J. D.; Stavros, V. G. The Journal of Physical Chemistry Letters 2012, 3, 348.
  4. Tseng, C.-M.; Lee, Y. T.; Ni, C.-K. The Journal of Physical Chemistry A 2009, 113, 3881. https://doi.org/10.1021/jp8100305
  5. Hadden, D. J.; Williams, C. A.; Roberts, G. M.; Stavros, V. G. Physical Chemistry Chemical Physics 2011, 13, 4494. https://doi.org/10.1039/c0cp02429e
  6. King, G. A.; Oliver, T. A. A.; Ashfold, M. N. R. The Journal of Chemical Physics 2010, 132, 214307. https://doi.org/10.1063/1.3427544
  7. Montero, R.; Conde, A. P.; Ovejas, V.; Martinez, R.; Castano, F.; Longarte, A. The Journal of Chemical Physics 2011, 135, 054308. https://doi.org/10.1063/1.3615544
  8. Wei, J.; Kuczmann, A.; Riedel, J.; Renth, F.; Temps, F. Physical Chemistry Chemical Physics 2003, 5, 315. https://doi.org/10.1039/b208132f
  9. Montero, R.; Conde, A. P.; Ovejas, V.; Fernandez-Fernandez, M.; Castano, F.; de Aldana, J. R. V.; Longarte, A. The Journal of Chemical Physics 2012, 137, 064317. https://doi.org/10.1063/1.4742344
  10. Cronin, B.; Nix, M. G. D.; Qadiri, R. H.; Ashfold, M. N. R. Physical Chemistry Chemical Physics 2004, 6, 5031. https://doi.org/10.1039/b411589a
  11. Lim, J. S.; Lim, I. S.; Lee, K.-S.; Ahn, D.-S.; Lee, Y. S.; Kim, S. K. Angewandte Chemie International Edition 2006, 45, 6290. https://doi.org/10.1002/anie.200601985
  12. Lim, J. S.; Lee, Y. S.; Kim, S. K. Angewandte Chemie International Edition 2008, 47, 1853. https://doi.org/10.1002/anie.200705358
  13. Devine, A. L.; Nix, M. G. D.; Dixon, R. N.; Ashfold, M. N. R. The Journal of Physical Chemistry A 2008, 112, 9563. https://doi.org/10.1021/jp802019v
  14. Lim, J. S.; Kim, S. K. Nat. Chem. 2010, 2, 627. https://doi.org/10.1038/nchem.702
  15. Kim, J. B.; Yacovitch, T. I.; Hock, C.; Neumark, D. M. Physical Chemistry Chemical Physics 2011, 13, 17378. https://doi.org/10.1039/c1cp22211b
  16. Cheng, C.-W.; Lee, Y.-P.; Witek, H. A. The Journal of Physical Chemistry A 2008, 112, 11998. https://doi.org/10.1021/jp805045s
  17. Armstrong, D. A.; Sun, Q.; Schuler, R. H. The Journal of Physical Chemistry 1996, 100, 9892. https://doi.org/10.1021/jp960165n
  18. Bordwell, F. G.; Zhang, X.-M.; Satish, A. V.; Cheng, J. P. Journal of the American Chemical Society 1994, 116, 6605. https://doi.org/10.1021/ja00094a015
  19. Borges dos Santos, R. M.; Muralha, V. S. F.; Correia, C. F.; Guedes, R. C.; Costa Cabral, B. J.; Martinho Simoes, J. A. The Journal of Physical Chemistry A 2002, 106, 9883. https://doi.org/10.1021/jp025677i
  20. Chandra, A. K.; Nam, P.-C.; Nguyen, M. T. The Journal of Physical Chemistry A 2003, 107, 9182. https://doi.org/10.1021/jp035622w
  21. Fu, Y.; Lin, B.-L.; Song, K.-S.; Liu, L.; Guo, Q.-X. Journal of the Chemical Society, Perkin Transactions 2 2002, 1223.
  22. Klein, E.; Lukes, V.; Cibulkova, Z.; Polovkova, J. Journal of Molecular Structure: THEOCHEM 2006, 758, 149. https://doi.org/10.1016/j.theochem.2005.10.015
  23. Jonsson, M.; Lind, J.; Merenyi, G.; Eriksen, T. E. Journal of the Chemical Society, Perkin Transactions 2 1994, 2149.
  24. Dunning, J. T. H. The Journal of Chemical Physics 1989, 90, 1007. https://doi.org/10.1063/1.456153
  25. Woon, D. E.; Dunning, J. T. H. The Journal of Chemical Physics 1994, 100, 2975. https://doi.org/10.1063/1.466439
  26. Werner, H.-J.; Knowles, P. J.; Knizia, G.; Manby, F. R.; Schütz, M.; Celani, P.; Korona, T.; Lindh, R.; Mitrushenkov, A.; Rauhut, G.; Shamasundar, K. R.; Adler, T. B.; Amos, R. D.; Bernhardsson, A.; Berning, A.; Cooper, D. L.; Deegan, M. J. O.; Dobbyn, A. J.; Eckert, F.; Goll, E.; Hampel, C.; Hesselmann, A.; Hetzer, G.; Hrenar, T.; Jansen, G.; Köppl, C.; Liu, Y.; Lloyd, A. W.; Mata, R. A.; May, A. J.; McNicholas, S. J.; Meyer, W.; Mura, M. E.; Nicklaß, A.; O'Neill, D. P.; Palmieri, P.; Peng, D.; Pflüger, K.; Pitzer, R.; Reiher, M.; Shiozaki, T.; Stoll, H.; Stone, A. J.; Tarroni, R.; Thorsteinsson, T.; Wang, M. Molpro, A Package of ab initio Programs, Version 2010.1
  27. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision A.02, Gaussian, Inc.: Wallingford CT, 2009.
  28. Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chemical Reviews 1988, 88, 899. https://doi.org/10.1021/cr00088a005
  29. Mulliken, R. S. The Journal of Chemical Physics 1955, 23, 1833. https://doi.org/10.1063/1.1740588
  30. Hansch, C.; Leo, A.; Taft, R. W. Chemical Reviews 1991, 91, 165. https://doi.org/10.1021/cr00002a004
  31. Fehir, J. R. J.; McCusker, J. K. The Journal of Physical Chemistry A 2009, 113, 9249. https://doi.org/10.1021/jp905314h
  32. Merrick, J. P.; Moran, D.; Radom, L. The Journal of Physical Chemistry A 2007, 111, 11683. https://doi.org/10.1021/jp073974n

Cited by

  1. Tuning photochemistry: substituent effects on πσ* state mediated bond fission in thioanisoles vol.17, pp.25, 2015, https://doi.org/10.1039/C5CP01660F