DOI QR코드

DOI QR Code

Effect of Ultrathin Al2O3 Layer on TiO2 Surface in CdS/CdSe Co-Sensitized Quantum Dot Solar Cells

  • Received : 2012.10.14
  • Accepted : 2012.11.12
  • Published : 2013.02.20

Abstract

In order to enhance the photovoltaic property of the CdS/CdSe co-sensitized quantum dot sensitized solar cells (QDSSCs), the surface of nanoporous $TiO_2$ photoanode was modified by ultrathin $Al_2O_3$ layer before the deposition of quantum dots (QDs). The $Al_2O_3$ layer, dip-coated by 0.10 M Al precursor solution, exhibited the optimized performance in blocking the back-reaction of the photo-injected electrons from $TiO_2$ conduction band (CB) to polysulfide electrolyte. Transient photocurrent spectra revealed that the electron lifetime (${\tau}_e$) increased significantly by introducing the ultrathin $Al_2O_3$ layer on $TiO_2$ surface, whereas the electron diffusion coefficient ($D_e$) was not varied. As a result, the $V_{oc}$ increased from 0.487 to 0.545 V, without appreciable change in short circuit current ($J_{sc}$), thus inducing the enhancement of photovoltaic conversion efficiency (${\eta}$) from 3.01% to 3.38%.

Keywords

References

  1. Shockley, W.; Queisser, H. J. J. Appl. Phys. 1961, 32, 510. https://doi.org/10.1063/1.1736034
  2. Wijayantha, K. G. U. L.; Peter, M.; Otley, L. C. Sol. Energy Mater. Sol. Cells 2004, 83, 263. https://doi.org/10.1016/j.solmat.2004.02.029
  3. Robel, I.; Subramanian, V.; Kuno, M.; Kamat, P. V. J. Am. Chem. Soc. 2006, 128, 2385. https://doi.org/10.1021/ja056494n
  4. Konenkamp, R.; Hoyer, P.; Wahi, A. Appl. Phys. Lett. 1996, 79, 7029.
  5. Schaller, R. D.; Klimov, V. I. Phys. Rev. Lett. 2004, 92, 186601. https://doi.org/10.1103/PhysRevLett.92.186601
  6. Murray, C. B.; Norris, D. J.; Bawendi, M. G. J. Am. Chem. Soc. 1993, 115, 8706. https://doi.org/10.1021/ja00072a025
  7. Yu, W. W.; Qu, L. H.; Guo, W. Z.; Peng, X. G. Chem. Mater. 2004, 16, 560. https://doi.org/10.1021/cm033007z
  8. Santra, P. K.; Kamat, P. V. J. Am. Chem. Soc. 2012, 134, 2508. https://doi.org/10.1021/ja211224s
  9. Zhang, Q.; Guo, X.; Huang, X.; Huang, S.; Li, D.; Luo, Y.; Shen, Q.; Toyoda, T.; Meng, Q. Phys. Chem. Chem. Phys. 2011, 13, 4659. https://doi.org/10.1039/c0cp02099k
  10. Palomares, E.; Clifford, J. N.; Haque, S. A.; Lutz, T.; Durrant, J. R. Chem. Commun. 2002, 1464.
  11. Liberatore, M.; Burtone, L.; Brown, T. M.; Reale, A.; Di Carlo, A.; Decker, F.; Caramori, S.; Bignozzi, C. A. Appl. Phys. Lett. 2009, 94, 173113/1.
  12. Chen, S. G.; Chappel, S.; Diamant, Y.; Zaban, A. Chem. Mater. 2001, 13, 4629. https://doi.org/10.1021/cm010343b
  13. Palomares, E.; Clifford, J. N.; Haque, S. A.; Lutz, T.; Durrant, J. R. J. Am. Chem. Soc. 2003, 125, 475. https://doi.org/10.1021/ja027945w
  14. Chi, C.-F.; Chen, F.; Lee, Y.-L.; Liu, I.-P.; Chou, S.-C.; Zhang, X.- L.; Bach, U. J. Mater. Chem. 2011, 21, 17534. https://doi.org/10.1039/c1jm12860d
  15. Ardalan, P.; Brennan, T. P.; Lee, H.-B.-R.; Bakke, J. R.; Ding, I.- K.; McGehee, M. D.; Bent, S. F. ACS Nano 2011, 5, 1495. https://doi.org/10.1021/nn103371v
  16. Shalom, M.; Ruhle, S.; Hod, I.; Yahav S.; Zaban, A. J. Am. Chem. Soc. 2009, 131, 9876. https://doi.org/10.1021/ja902770k
  17. Li, L.; Yang, X.; Gao, J.; Tian, H.; Zhao, J.; Hagfeldt, A.; Sun, L. J. Am. Chem. Soc. 2011, 133, 8458. https://doi.org/10.1021/ja201841p
  18. Lee, Y. L.; Huang, B. M.; Chien, H. T. Chem. Mater. 2008, 20, 6903. https://doi.org/10.1021/cm802254u
  19. Rawal, S. B.; Sung, S. D.; Moon, S.-Y.; Shin, Y.-J.; Lee, W. I. Mater. Lett. 2012, 82, 240. https://doi.org/10.1016/j.matlet.2012.05.089
  20. Yang, S. M.; Huang, C. H.; Zhai, J.; Wang, Z. S.; Jiang. L. J. Mater. Chem. 2002, 12, 1459. https://doi.org/10.1039/b105796k
  21. Diguna, L. J.; Shen, Q.; Kobayashi, J.; Toyoda, T. Appl. Phys. Lett. 2007, 91, 023116. https://doi.org/10.1063/1.2757130
  22. Krüger, J.; Plass, R.; Gratzel, M.; Cameron, P. J.; Peter, L. M. J. Phys.Chem. B 2003, 107, 7536. https://doi.org/10.1021/jp0348777
  23. Paulose, M.; Shankar, K.; Yoriya, S.; Prakasam, H. E.; Varghese, O. K.; Mor, G. K.; Latempa, T. A.; Fitzgerald, A.; Grimes, C. A. J. Phys. Chem. B 2006, 110, 16179. https://doi.org/10.1021/jp064020k
  24. Kim, S. M.; Kim, H. J.; Kim, Y. J.; Lim, G.; Choi, Y. S.; Lee, W. I. Bull. Korean Chem. Soc. 2011, 32, 4035. https://doi.org/10.5012/bkcs.2011.32.11.4035
  25. Nakade, S.; Kanzaki, T.; Kubo, W.; Kitamura, T.; Wada, Y.; Yanagida, S. J. Phys. Chem. B 2005, 109, 3480. https://doi.org/10.1021/jp0460036
  26. Zhu, K.; Vinzant, T. B.; Neale, N. R.; Miedaner, A.; Frank, A. J. Nano Lett. 2007, 7, 3739. https://doi.org/10.1021/nl072145a

Cited by

  1. Photoanode of Dye-Sensitized Solar Cells vol.31, pp.9, 2014, https://doi.org/10.1088/0256-307X/31/9/098401
  2. film assisted by colloidal CdSe quantum dots vol.28, pp.20, 2017, https://doi.org/10.1088/1361-6528/aa6a47
  3. Regulating the Fluorescence Emission of CdSe Quantum Dots Based on the Surface Ligand Exchange with MAA vol.31, pp.11, 2013, https://doi.org/10.1002/pat.4993