DOI QR코드

DOI QR Code

Oxidative Modification of Cytochrome c by Tetrahydropapaveroline, an Isoquinoline-Derived Neurotoxin

  • Received : 2012.10.23
  • Accepted : 2012.11.09
  • Published : 2013.02.20

Abstract

Tetrahyropapaveroline (THP) is compound derived from dopamine metabolism and is capable of causing dopaminergic neurodegenerative disorder, such as Parkinson's disease (PD). The aim of this study was to evaluate the potential of THP to cause oxidative damage on the structure of cytochrome c (cyt c). Our data showed that THP led to protein aggregation and the formation of carbonyl compound in protein aggregates. THP also induced the release of iron from cyt c. Reactive oxygen species (ROS) scavengers and iron specific chelator inhibited the THP-mediated cyt c modification and carbonyl compound formation. The results of this study show that ROS may play a critical role in THP-induced cyt c modification and iron releasing of cyt c. When cyt c that has been exposed to THP was subsequently analyzed by amino acid analysis, lysine, histidine and methionine residues were particularly sensitive. It is suggested that oxidative damage of cyt c by THP might induce the increase of iron content in cells and subsequently led to the deleterious condition. This mechanism is associated with the deterioration of organs under neurodegenerative disorder such as PD.

Keywords

References

  1. Sourkes, T. L. Nature 1971, 229, 413. https://doi.org/10.1038/229413a0
  2. Sandler, M.; Carter, S. B.; Hunter, K. R.; Stern, G. M. 1973, 241,439. https://doi.org/10.1038/241439a0
  3. Matsubara, K.; Fukushima, S.; Akane, A.; Kobayashi, S.; Shiono, H. J. Pharmacol. Exp. Ther. 1992, 260, 974.
  4. Maruyama, W.; Sango, K.; Iwasa, K.; Minami, C.; Dostert, P.; Kawai, M.; Moriyasu, M.; Naoi, M. Neurosci. Lett. 2000, 291, 89. https://doi.org/10.1016/S0304-3940(00)01381-1
  5. Storch, A.; Ott, S.; Hwang, Y. I.; Ortmann, R.; Hein, A.; Frenzel, S.; Matsubara, K.; Ohta, S.; Wolf, H. U.; Schwarz, J. Biochem. Pharmacol. 2002, 63, 909. https://doi.org/10.1016/S0006-2952(01)00922-4
  6. Lee, J. J.; Kim, Y. M.; Yin, S. Y.; Park, H. D.; Kang, M. H.; Hong, J. T.; Lee, M. K. Biochem. Pharmacol. 2003, 66, 1787. https://doi.org/10.1016/S0006-2952(03)00421-0
  7. Dietrich, R.; Erwin, V. Ann. Rev. Pharm. Toxicol. 1980, 20, 55. https://doi.org/10.1146/annurev.pa.20.040180.000415
  8. Soh, Y.; Shin, M. H.; Lee, J. S.; Jang, J. H.; Kim, O. H.; Kang, H.; Surh, Y. J. Mutat. Res. 2003, 544, 129. https://doi.org/10.1016/j.mrrev.2003.06.023
  9. Suhr, Y. J. Eur. J. Clin. Invest. 1999, 29, 650. https://doi.org/10.1046/j.1365-2362.1999.00511.x
  10. Shin, M. H.; Jang, J. H.; Surh, Y. J. Free Radic. Biol. Med. 2004, 36, 1185. https://doi.org/10.1016/j.freeradbiomed.2004.02.011
  11. McNaught, K. S.; Carrupt, P. A.; Altomare, C.; Cellamare, S.; Carotti, A.; Testa, B.; Jenner, P.; Marsden, C. D. Biochem. Pharmacol. 1998, 56, 921. https://doi.org/10.1016/S0006-2952(98)00142-7
  12. Soto-Otero, R.; Sanmartin-Suarez, C.; Sanchez-Iglesias, S.; Hermida-Ameijeiras, A.; Sanchez-Sellero, I.; Mendez-Alvarez, E. Journal of Biochemical and Molecular Toxicology 2006, 20, 209. https://doi.org/10.1002/jbt.20138
  13. Beal, M. F. Ann. N. Y. Acad. Sci. 2003, 991, 120.
  14. Greenamyre, J. T.; Sherer, T. B.; Betarbet, R.; Panov, A. V. IUBMB Life 2001, 52, 135. https://doi.org/10.1080/15216540152845939
  15. Winklhofer, K. F.; Haass, C. Biochim. Biophys. Acta 2010, 1802,29. https://doi.org/10.1016/j.bbadis.2009.08.013
  16. Schapira, A. H.; Cooper, J. M.; Dexter, D.; Jenner, P.; Clark, J. B.; Marsden, C. D. Lancet 1989, 1, 1269.
  17. Choi, W. S.; Palmiter, R. D.; Xia, Z. J. Cell Biol. 2011, 192, 873. https://doi.org/10.1083/jcb.201009132
  18. Perier, C.; Bove, J.; Vila, M. Antioxid. Redox. Signal. 2012, 16,883. https://doi.org/10.1089/ars.2011.4074
  19. Bueler, H. Apoptosis 2010, 15, 1336. https://doi.org/10.1007/s10495-010-0465-0
  20. Yao, Z.; Wood, N. W. Antioxid. Redox. Signal. 2009, 11, 2135. https://doi.org/10.1089/ars.2009.2624
  21. Moore, G. R.; Pettigrew, G. W. Cytochrome c: Evolution, Structure,and Physicochemical Aspects; Springer-Verlag: Berlin, 1990.
  22. Dumont, M. E.; Cardillo, T. S.; Hayes, M. K.; Sherman, F. Mol. Cell Biol. 1991, 11, 5487.
  23. Dumont, M. E.; Corin, A. F.; Campbell, G. A. Biochemistry 1994, 33, 7368. https://doi.org/10.1021/bi00189a043
  24. Nijhawan, P.; Li, D.; Budihardjo, I.; Srinivasula, S. M.; Ahmad, M.; Alnemri, E. S.; Wang, X. Cell 1997, 91, 479. https://doi.org/10.1016/S0092-8674(00)80434-1
  25. Hashimoto, M.; Takeda, A.; Hsu, L. J.; Takenouchi, T.; Masliah, E.; Biol, J. Chem. 1999, 274, 28849.
  26. Mcgill, A.; Frank, A.; Emmett, N.; Turnbull, D. M.; Bich, M. A.; Reynolds, N. J. FASEB J. 2005, 19, 1012.
  27. Green, D. R.; Evan, G. I. A Matter of Life and Death, Cancer Cell 2002, 1, 19. https://doi.org/10.1016/S1535-6108(02)00024-7
  28. Friedlander, R. M. N. Engl. J. Med. 2003, 348, 1365. https://doi.org/10.1056/NEJMra022366
  29. Smith, P. K.; Krohn, R. I.; Hermanson, G. T.; Mallia, A. K.; Gartner, F. H.; Provenzano, M. D.; Fujimoto, E. K.; Goeke, N. M.; Olson, B. J.; Klenk, D. C. Anal. Biochem. 1985, 150, 76. https://doi.org/10.1016/0003-2697(85)90442-7
  30. Laemmli, U. K. Nature 1970, 227, 680. https://doi.org/10.1038/227680a0
  31. Reznick, A. Z.; Packer, L. Methods Enzymol. 1994, 233, 357. https://doi.org/10.1016/S0076-6879(94)33041-7
  32. Pieroni, L.; Khalil, L.; Charlotte, F.; Poynard, T.; Piton, A.; Hainque, B.; Imbert-Bismut, F. Clin. Chem. 2001, 47, 2059.
  33. Hugli, T. E.; Moore, S. J. Biol. Chem. 1972, 247, 2828.
  34. Shacter, E.; Williams, J. A.; Levine, R. L. Free Radic. Biol. Med. 1995, 18, 815. https://doi.org/10.1016/0891-5849(95)93872-4
  35. Jasin, H. E. J. Immunol. 1983, 130, 1918.
  36. Lunec, J.; Blake, D. R.; McCleary, S. J.; Brailsford, S.; Bacon, P. A. J. Clin. Invest. 1985, 76, 2084. https://doi.org/10.1172/JCI112212
  37. Schuessler, H.; Schilling, K. Int. J. Radiat. Bio. 1984, 45, 267. https://doi.org/10.1080/09553008414550381
  38. Berlett, B. S.; Stadtman, E. R. J. Biol. Chem. 1997, 272, 20313. https://doi.org/10.1074/jbc.272.33.20313
  39. Goldstein, S.; Czapski, G. Free Radic. Res. Commun. 1987, 51,693.
  40. Gutteridge, J. M.; Halliwell, B. Biochem. Pharmacol. 1982, 31, 2801. https://doi.org/10.1016/0006-2952(82)90136-8
  41. Imlay, J. A.; Chin, S. M.; Linn, S. Science 1988, 240, 640. https://doi.org/10.1126/science.2834821
  42. Prutz, W. A. Radiat. Environ. Biophys. 1984, 23, 7. https://doi.org/10.1007/BF01326732
  43. Kang, J. H. Bull. Korean Chem. Soc. 2006, 27, 1891. https://doi.org/10.5012/bkcs.2006.27.11.1891
  44. Halliwell, B.; Gutteridge, J. M. C. Oxidative Stress and Antioxidant Protection: Some Special Cases. Free Radicals in Biology and Medicine; Oxford: New York, 2007; p 333.
  45. Refsgaardm, H. H.; Tsai, L.; Stadman, E. R. Proc. Natl. Acad. Sci. USA 2000, 97, 611. https://doi.org/10.1073/pnas.97.2.611
  46. Bushnell, G.; Louie, G.; Brayer, J. Mol. Biol. 1990, 214, 585. https://doi.org/10.1016/0022-2836(90)90200-6
  47. Banci, L.; Bertini, I.; Huber, J. G.; Spyroulias, G. A.; Turano, P. J. Biol. Inorg. Chem. 1999, 4, 21. https://doi.org/10.1007/s007750050285
  48. Raphael, A.; Gray, H. J. Am. Chem. Soc. 1991, 113, 1038. https://doi.org/10.1021/ja00003a045
  49. Hirota, S.; Hattori, Y.; Nagao, S.; Taketa, M.; Komori, H.; Kamikubo, H.; Wang, Z.; Takahashi, I.; Negi, S.; Sugiura, Y.; Kataoka, M.; Higuchi, Y. Proc. Natl. Acad. Sci. USA 2010, 107, 12854. https://doi.org/10.1073/pnas.1001839107
  50. Koziorowski, D.; Friedman, A.; Arosio, P.; Santambrogio, P.; Dziewalska, D. Parkinsonism Relat Disord. 2007, 13, 214. https://doi.org/10.1016/j.parkreldis.2006.10.002