DOI QR코드

DOI QR Code

APPROXIMATING COMMON FIXED POINTS OF A SEQUENCE OF ASYMPTOTICALLY QUASI-f-g-NONEXPANSIVE MAPPINGS IN CONVEX NORMED VECTOR SPACES

  • Received : 2012.11.27
  • Accepted : 2013.01.21
  • Published : 2013.02.28

Abstract

In this paper, we introduce asymptotically quasi-$f-g$-nonexpansive mappings in convex normed vector spaces and consider approximating common fixed points of a sequence of asymptotically quasi-$f-g$-nonexpansive mappings in convex normed vector spaces.

Keywords

References

  1. B.S. Lee: Strong convergence theorems with a Noor-type iterative scheme in convex metric spaces. Comput. Math. Appl. 61 (2011) 3218-3225. https://doi.org/10.1016/j.camwa.2011.04.017
  2. Q.H. Liu: Iterative sequences for asymptotically quasi-nonexpansive mappings with errors number. J. Math. Anal. Appl. 259 (2001) 18-24. https://doi.org/10.1006/jmaa.2000.7353
  3. Q.Y. Liu, Z.B. Liu & N.J. Huang: Approximating the common fixed points of two sequences of uniformly quasi-Lipschitzian mappings in convex metric spaces. Appl. Math. & Comp. 216 (2010), 883-889. https://doi.org/10.1016/j.amc.2010.01.096
  4. M.O. Osilike & S.C. Aniagbosor: Weak and strong convergence theorems for fixed points of asymptotically nonexpansive mappings. Math. Comput. Model. 32 (2000), 1181-1191. https://doi.org/10.1016/S0895-7177(00)00199-0
  5. W. Takahashi: A convexity in metric space and nonexpansive mappings. I. Kodai Math. Sem. Rep. 22 (1976), 142-149.
  6. Y.X. Tian: Convergence of an Ishikawa type iterative scheme for asymptotically quasi-nonexpansive mappings. Comput. Math. Appl. 49 (2005) 1905-1912. https://doi.org/10.1016/j.camwa.2004.05.017