DOI QR코드

DOI QR Code

COMMON FIXED POINT THEOREM FOR MULTIMAPS ON MENGER L-FUZZY METRIC SPACE

  • Received : 2012.10.10
  • Accepted : 2013.01.15
  • Published : 2013.02.28

Abstract

In this paper, we obtain a common fixed point theorem for multivalued mappings in a complete Menger $\mathcal{L}$-fuzzy metric space. $\mathcal{L}$-fuzzy metric space is a generalization of fuzzy metric spaces and intuitionistic fuzzy metric spaces. We extend and generalize the results of Kubiaczyk and Sharma [24], Sharma, Kutukcu and Rathore [34].

Keywords

References

  1. R. Badard: Fixed point theorems for fuzzy numbers. Fuzzy Sets and Systems 13 (1984), 291-302. https://doi.org/10.1016/0165-0114(84)90063-0
  2. S.S. Chang: On the theory of probabilistic matric spaces with applications. Acta Math Sinica, New Series 1 (1985), no. 4, 366-377. https://doi.org/10.1007/BF02564846
  3. S.S. Chang, Y.J. Cho, B.S. Lee, J.s. Jung & S.M. Kang: Coincidence point and minimization theorems in fuzzy metric spaces. Fuzzy Sets and Systems 88 (1997), no. 1, 119-128. https://doi.org/10.1016/S0165-0114(96)00060-7
  4. S.S. Chang, Y.J. Cho, S.M. Kang & J.X. Fan: Common fixed point theorems for multivalued mappings in Menger PM-space. Math. Japonica 40 (1994), no. 2, 289-293.
  5. Y.J. Cho: Fixed points in fuzzy metric spaces. J. Fuzzy Math. 5 (1997), no. 4, 949-962.
  6. B. Deshpande: Common fixed point for multimaps in Menger spaces. Quatar Univ. Sci. J. 27 (2007), 11-15.
  7. B. Deshpande: Fixed point and (DS)-weak commutativity condition in intuitionistic fuzzy metric spaces. Chaos Solitons Fractals 42 (2009), 2722-2728. https://doi.org/10.1016/j.chaos.2009.03.178
  8. G. Deschrijver & EE. Kerre: On the relationship between some extensions of fuzzy set theory. Fuzzy Sets and Systems 133 (2003), 227-35. https://doi.org/10.1016/S0165-0114(02)00127-6
  9. M. Edelstein: On fixed and periodic points under contaraction mappings. J. London Math. Soc. 37 (1962), 74-79. https://doi.org/10.1112/jlms/s1-37.1.74
  10. MS. EL Naschie: On the uncertainity of cantorian geometry and two-slit experiments. Chaos Solitons Fractals 9 (1998), no. 5, 517-29. https://doi.org/10.1016/S0960-0779(97)00150-1
  11. MS. EL Naschie: A review of E-infinity theory and mass spectrum of high energy particle physics. Chaos Solitons Fractals 19 (2004), 209-36. https://doi.org/10.1016/S0960-0779(03)00278-9
  12. MS. EL Naschie: On a fuzzy Kahler-like manifold which is cosistent with two-slit experiment. Int. J. Nonlinear Sci. Numer. Simul. 6 (2005), 95-98.
  13. MS. EL Naschie: The idealized quantum two-slit Gedanken experiment revisited -Criticism and reinterpretation. Chaos Solitons Fractals 27 (2006), 9-13. https://doi.org/10.1016/j.chaos.2005.05.010
  14. J.X. Fang: On fixed point theorems in fuzzy metric spaces. Fuzzy Sets and Systems 46 (1992), 107-113. https://doi.org/10.1016/0165-0114(92)90271-5
  15. V. Gregori & A. Sapena: On fixed-point theorem in fuzzy metric spaces. Fuzzy Sets and Systems 125 (2002), 245-252. https://doi.org/10.1016/S0165-0114(00)00088-9
  16. V. Gregori, S. Romaguera & P. Veeramani: A note on intuitionistic fuzzy metric spaces. Chaos Solitons Fractals 28 (2006), 902-905. https://doi.org/10.1016/j.chaos.2005.08.113
  17. A. George & P. Veeramani: On some results in fuzzy metric spaces. Fuzzy Sets and Systems 64 (1994), 395-399. https://doi.org/10.1016/0165-0114(94)90162-7
  18. J. Goguen: L-fuzzy sets. J. Math. Anal. Appl. 18 (1967), 145-74. https://doi.org/10.1016/0022-247X(67)90189-8
  19. M. Grabiec: Fixed points in fuzzy metric space. Fuzzy Sets and Systems 27 (1988), 385-389. https://doi.org/10.1016/0165-0114(88)90064-4
  20. O. Hadzic: Fixed point theorems for multivalued mappings in some classes of fuzzy metric spaces. Fuzzy Sets and Systems 29 (1989), 115-125. https://doi.org/10.1016/0165-0114(89)90140-1
  21. O. Hadzic and E. Pop: Fixed point theory in probabilistic Metric speaces. Vol 536 of Mathematics and its Applications. Kluwer Academic Publications, Dordrecht, The Netherland, 2001.
  22. J.S. Jung, Y.J. Cho & J.K. Kim: Minimization theorems for fixed point theorems in fuzzy metric spaces and applications. Fuzzy Sets and Systems 61 (1994), 199-207. https://doi.org/10.1016/0165-0114(94)90234-8
  23. J.S. Jung, Y.J. Cho, S.S. Chang & S.M. Kang: Coincidence theorems for set valued and mappings and Ekland's variational principle in fuzzy metric spaces. Fuzzy Sets and Systems 79 (1996), 239-250. https://doi.org/10.1016/0165-0114(95)00084-4
  24. I. Kubiaczyu & S. Sharma: Common fixed point theorem, Multimaps in fuzzy metric space East. Asian Math. J. 18 (2002), no. 2, 175-182.
  25. I. Kramosil & J. Michalek: Fuzzy metric and statistical metric spaces. Kybernetika 11 (1975), 326-334.
  26. S. Kyzyska & I. Kubiaczyk: Fixed point theorems for upper semicontinuous and weakly upper semicontinuous multivalued mappings. Math. Japonica 47 (1998), no. 2, 237-240.
  27. S.N. Mishra, N. Sharma & S.L. Singh: Common fixed points of maps on fuzzy metric spaces. Internat. J. Math. Math. Sci. 17 (1994), 253-258. https://doi.org/10.1155/S0161171294000372
  28. D.A. Mihet: Banach contraction theorem in fuzzy metric spaces. Fuzzy Sets and Systems 144 (2004), 431-439. https://doi.org/10.1016/S0165-0114(03)00305-1
  29. J.H. Park: Intuitionistic fuzzy metric spaces. Chaos Solitons Fractals 22 (2004), 1039-1046. https://doi.org/10.1016/j.chaos.2004.02.051
  30. R. Saadati & J.H. Park: On the intuitionistic fuzzy topological spaces. Chaos Solitons Fractals 2 (2006), 331-344.
  31. R. Saadati & J.H. Park: Intuitionistic fuzzy Euclidean normed spaces. Comman. in Math. Anal. 1 (2006), no. 2, 85-90.
  32. R. Saadati: Notes to the paper "Fixed points in intuitionistic fuzzy metric spaces" and its generalization to L-fuzzy metric spaces. Chaos Solitons Fractals 3 (2008),176-180.
  33. R. Saadati, A. Razani & H. Adibi: A common fixed point theorem in L-fuzzy metric spaces. Chaos Solitons Fractals 33 (2007), 358-363. https://doi.org/10.1016/j.chaos.2006.01.023
  34. S. Sharma & B. Deshpande: Common fixed points of compatible maps of type (${\beta}$) on fuzzy metric spaces. Demonstratio Math. 35 (2002), no. 1, 165-174.
  35. S. Sharma & B. Deshpande: Discontinuity and weak compatibility in fixed point consideration on non complete fuzzy metric spaces. J. Fuzzy Math. 11 (2003), no. 2, 671-686.
  36. S. Sharma & B. Deshpande: Common fixed points without continuity in fuzzy metric spaces. J. Korea Soc. Math. Educ. Ser. B: Pure Appl. Math. 12 (2005), no. 4, 289-306.
  37. S. Sharma & B. Deshpande: Common fixed point theorems for non-compatible mappings and Meir-Keeler type contractive condition in fuzzy metric space. Int. Rev. fuzzy Math. 1 (2006), no. 2, 147-159.
  38. S. Sharma, B. Deshpande & Deepti Thakur: Related fixed point theorem for four mappings on two fuzzy metric spaces. Int. J. Pure Appl. Math. 41 (2007), no. 2, 241-250.
  39. S. Sharma & B. Deshpande: Common fixed point theorems for finite number of mappings without continuity and compatibility on fuzzy metric spaces. Math. Morav 12 (2008), 43-61.
  40. S. Sharma & B. Deshpande: Common fixed point theorems for finite number of mappings without continuity and compatibility on fuzzy metric spaces. Fuzzy Systems Math. 24 (2010), no. 2, 73-83.
  41. S. Sharma & B. Deshpande: A fixed point theorem in intuitionistic fuzzy metric spaces by using new commutativity condition. Fuzzy Systems Math. 24 (2010), no. 4, 151-161.
  42. S. Sharma & B. Deshpande: On intuitionistic fuzzy (${\psi}-{\phi}$) contractive mapping in non-Archimedean intuitionistic fuzzy metric spaces. J. Fuzzy Math. 19 (2011), no. 3, 625-632.
  43. S. Sharma & B. Deshpande: Common fixed point theorems for finite number of mappings without continuity and compatibility on intuitionistic fuzzy metric spaces. Chaos Solitons Fractals 40 (2009), 2242-2256. https://doi.org/10.1016/j.chaos.2007.10.011
  44. S. Sharma & B. Deshpande: Compatible mappings of type (I) and type (II) on intuitionistic fuzzy metric spaces in consideration of common fixed point. Comman. Korean Math. Soc. 24 (2009), no. 2, 197-214. https://doi.org/10.4134/CKMS.2009.24.2.197
  45. S. Sharma, B. Deshpande & R. Pathak: Related fixed point theorem on two intuitionistic fuzzy metric spaces. J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. 16 (2009), no. 4, 345-357.
  46. S. Sharma, Kutukcu & R.S. Rathor: Common fixed point for multivalued mappings in Intuitionistic fuzzy metric spaces. Comman. Korean Math. Soc. 22 (2007), no. 3, 391-399. https://doi.org/10.4134/CKMS.2007.22.3.391
  47. S. Sharma & I. Kubiaczyk: Common coincidence point in fuzzy metric space. J. Fuzzy Mathematics 11 (2003), no. 1, 1-5.
  48. B. Schweizer, H. Sherwood & RM Tardiff: Contractions on PM-space examples and counterexamples. Stochastica 1 (1998), 5-17.
  49. L.A Zadeh: Fuzzy sets. Inform. Control 8 (1965), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X