DOI QR코드

DOI QR Code

Recent Achievements in Stem Cell Therapy for Pediatric Gastrointestinal Tract Disease

  • Bae, Sun Hwan (Department of Pediatrics, School of Medicine, Konkuk University)
  • Received : 2013.03.08
  • Accepted : 2013.03.14
  • Published : 2013.03.30

Abstract

The field of stem cell research has been rapidly expanding. Although the clinical usefulness of research remains to be ascertained through human trials, the use of stem cells as a therapeutic option for currently disabling diseases holds fascinating potential. Many pediatric gastrointestinal tract diseases have defect in enterocytes, enteric nervous system cells, smooth muscles, and interstitial cells of Cajal. Various kinds of therapeutic trials using stem cells could be applied to these diseases. This review article focuses on the recent achievements in stem cell applications for pediatric gastrointestinal tract diseases.

Keywords

References

  1. Quante M, Wang TC. Stem cells in gastroenterology and hepatology. Nat Rev Gastroenterol Hepatol 2009;6:724-37. https://doi.org/10.1038/nrgastro.2009.195
  2. Ratajczak MZ, Suszynska M, Pedziwiatr D, Mierzejewska K, Greco NJ. Umbilical cord blood-derived very small embryonic like stem cells (VSELs) as a source of pluripotent stem cells for regenerative medicine. Pediatr Endocrinol Rev 2012;9:639-43.
  3. van der Flier LG, Clevers H. Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol 2009;71:241-60. https://doi.org/10.1146/annurev.physiol.010908.163145
  4. Kuo TK, Hung SP, Chuang CH, Chen CT, Shih YR, Fang SC, et al. Stem cell therapy for liver disease: parameters governing the success of using bone marrow mesenchymal stem cells. Gastroenterology 2008;134:2111-21,2121.e1-3. https://doi.org/10.1053/j.gastro.2008.03.015
  5. Basma H, Soto-Gutierrez A, Yannam GR, Liu L, Ito R, Yamamoto T, et al. Differentiation and transplantation of human embryonic stem cell-derived hepatocytes. Gastroenterology 2009;136:990-9. https://doi.org/10.1053/j.gastro.2008.10.047
  6. Gilchrist ES, Plevris JN. Bone marrow-derived stem cells in liver repair: 10 years down the line. Liver Transpl 2010;16:118-29. https://doi.org/10.1002/lt.21965
  7. Meirelles Lda S, Fontes AM, Covas DT, Caplan AI. Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev 2009;20:419-27. https://doi.org/10.1016/j.cytogfr.2009.10.002
  8. Shi Y, Hu G, Su J, Li W, Chen Q, Shou P, et al. Mesenchymal stem cells: a new strategy for immunosuppression and tissue repair. Cell Res 2010;20:510-8. https://doi.org/10.1038/cr.2010.44
  9. Nauta AJ, Fibbe WE. Immunomodulatory properties of mesenchymal stromal cells. Blood 2007;110:3499-506. https://doi.org/10.1182/blood-2007-02-069716
  10. Hawkey CJ. Stem cells as treatment in inflammatory bowel disease. Dig Dis 2012;30 Suppl 3:134-9. https://doi.org/10.1159/000342740
  11. Glocker EO, Frede N, Perro M, Sebire N, Elawad M, Shah N, et al. Infant colitis--it's in the genes. Lancet 2010;376:1272. https://doi.org/10.1016/S0140-6736(10)61008-2
  12. Streutker CJ, Huizinga JD, Driman DK, Riddell RH. Interstitial cells of Cajal in health and disease. Part I: normal ICC structure and function with associated motility disorders. Histopathology 2007;50:176-89. https://doi.org/10.1111/j.1365-2559.2006.02493.x
  13. Almond S, Lindley RM, Kenny SE, Connell MG, Edgar DH. Characterisation and transplantation of enteric nervous system progenitor cells. Gut 2007;56:489-96. https://doi.org/10.1136/gut.2006.094565
  14. Metzger M, Bareiss PM, Danker T, Wagner S, Hennenlotter J, Guenther E, et al. Expansion and differentiation of neural progenitors derived from the human adult enteric nervous system. Gastroenterology 2009;137:2063-73.e4. https://doi.org/10.1053/j.gastro.2009.06.038
  15. Metzger M, Caldwell C, Barlow AJ, Burns AJ, Thapar N. Enteric nervous system stem cells derived from human gut mucosa for the treatment of aganglionic gut disorders. Gastroenterology 2009;136:2214-25.e1-3. https://doi.org/10.1053/j.gastro.2009.02.048
  16. Lindley RM, Hawcutt DB, Connell MG, Almond SL, Vannucchi MG, Faussone-Pellegrini MS, et al. Human and mouse enteric nervous system neurosphere transplants regulate the function of aganglionic embryonic distal colon. Gastroenterology 2008;135:205-16.e6. https://doi.org/10.1053/j.gastro.2008.03.035
  17. Tsai YH, Murakami N, Gariepy CE. Postnatal intestinal engraftment of prospectively selected enteric neural crest stem cells in a rat model of Hirschsprung disease. Neurogastroenterol Motil 2011;23:362-9. https://doi.org/10.1111/j.1365-2982.2010.01656.x
  18. Hagl CI, Rauch U, Klotz M, Heumuller S, Grundmann D, Ehnert S, et al. The microenvironment in the Hirschsprung's disease gut supports myenteric plexus growth. Int J Colorectal Dis 2012;27:817-29. https://doi.org/10.1007/s00384-012-1411-0
  19. Choi KM, Gibbons SJ, Roeder JL, Lurken MS, Zhu J, Wouters MM, et al. Regulation of interstitial cells of Cajal in the mouse gastric body by neuronal nitric oxide. Neurogastroenterol Motil 2007;19:585-95. https://doi.org/10.1111/j.1365-2982.2007.00936.x
  20. Takahashi T, Nakamura K, Itoh H, Sima AA, Owyang C. Impaired expression of nitric oxide synthase in the gastric myenteric plexus of spontaneously diabetic rats. Gastroenterology 1997;113:1535-44. https://doi.org/10.1053/gast.1997.v113.pm9352855
  21. Horvath VJ, Vittal H, Lorincz A, Chen H, Almeida-Porada G, Redelman D, et al. Reduced stem cell factor links smooth myopathy and loss of interstitial cells of cajal in murine diabetic gastroparesis. Gastroenterology 2006;130:759-70. https://doi.org/10.1053/j.gastro.2005.12.027
  22. Tong W, Jia H, Zhang L, Li C, Ridolfi TJ, Liu B. Exogenous stem cell factor improves interstitial cells of Cajal restoration after blockade of c-kit signaling pathway. Scand J Gastroenterol 2010;45:844-51. https://doi.org/10.3109/00365521003782371
  23. Lin L, Xu LM, Zhang W, Ge YB, Tang YR, Zhang HJ, et al. Roles of stem cell factor on the depletion of interstitial cells of Cajal in the colon of diabetic mice. Am J Physiol Gastrointest Liver Physiol 2010;298:G241-7. https://doi.org/10.1152/ajpgi.90706.2008
  24. Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 2007;449:1003-7. https://doi.org/10.1038/nature06196
  25. Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 2009;459:262-5. https://doi.org/10.1038/nature07935
  26. Barker N, Huch M, Kujala P, van de Wetering M, Snippert HJ, van Es JH, et al. Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell 2010;6:25-36. https://doi.org/10.1016/j.stem.2009.11.013
  27. Sato T, Stange DE, Ferrante M, Vries RG, Van Es JH, Van den Brink S, et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium. Gastroenterology 2011;141:1762-72. https://doi.org/10.1053/j.gastro.2011.07.050
  28. Jung P, Sato T, Merlos-Suarez A, Barriga FM, Iglesias M, Rossell D, et al. Isolation and in vitro expansion of human colonic stem cells. Nat Med 2011;17:1225-7. https://doi.org/10.1038/nm.2470
  29. Yui S, Nakamura T, Sato T, Nemoto Y, Mizutani T, Zheng X, et al. Functional engraftment of colon epithelium expanded in vitro from a single adult $Lgr5^+$ stem cell. Nat Med 2012;18:618-23. https://doi.org/10.1038/nm.2695
  30. Fuller MK, Faulk DM, Sundaram N, Shroyer NF, Henning SJ, Helmrath MA. Intestinal crypts reproducibly expand in culture. J Surg Res 2012;178:48-54. https://doi.org/10.1016/j.jss.2012.03.037
  31. Orlando G, Bendala JD, Shupe T, Bergman C, Bitar KN, Booth C, et al. Cell and organ bioengineering technology as applied to gastrointestinal diseases. Gut 2012. [Epub ahead of print]
  32. Choi RS, Vacanti JP. Preliminary studies of tissue-engineered intestine using isolated epithelial organoid units on tubular synthetic biodegradable scaffolds. Transplant Proc 1997;29:848-51. https://doi.org/10.1016/S0041-1345(96)00164-9
  33. Grikscheit TC, Siddique A, Ochoa ER, Srinivasan A, Alsberg E, Hodin RA, et al. Tissue-engineered small intestine improves recovery after massive small bowel resection. Ann Surg 2004;240:748-54. https://doi.org/10.1097/01.sla.0000143246.07277.73
  34. Sala FG, Kunisaki SM, Ochoa ER, Vacanti J, Grikscheit TC. Tissue-engineered small intestine and stomach form from autologous tissue in a preclinical large animal model. J Surg Res 2009;156:205-12. https://doi.org/10.1016/j.jss.2009.03.062
  35. Totonelli G, Maghsoudlou P, Fishman JM, Orlando G, Ansari T, Sibbons P, et al. Esophageal tissue engineering: a new approach for esophageal replacement. World J Gastroenterol 2012;18:6900-7. https://doi.org/10.3748/wjg.v18.i47.6900
  36. Nakase Y, Nakamura T, Kin S, Nakashima S, Yoshikawa T, Kuriu Y, et al. Intrathoracic esophageal replacement by in situ tissue-engineered esophagus. J Thorac Cardiovasc Surg 2008;136:850-9. https://doi.org/10.1016/j.jtcvs.2008.05.027
  37. Maemura T, Shin M, Sato M, Mochizuki H, Vacanti JP. A tissue-engineered stomach as a replacement of the native stomach. Transplantation 2003;76:61-5. https://doi.org/10.1097/01.TP.0000068903.63554.1B
  38. Maemura T, Shin M, Kinoshita M, Majima T, Ishihara M, Saitoh D, et al. A tissue-engineered stomach shows presence of proton pump and G-cells in a rat model, resulting in improved anemia following total gastrectomy. Artif Organs 2008;32:234-9. https://doi.org/10.1111/j.1525-1594.2007.00528.x
  39. Micci MA, Kahrig KM, Simmons RS, Sarna SK, Espejo-Navarro MR, Pasricha PJ. Neural stem cell transplantation in the stomach rescues gastric function in neuronal nitric oxide synthase-deficient mice. Gastroenterology 2005;129:1817-24. https://doi.org/10.1053/j.gastro.2005.08.055
  40. Grikscheit TC, Ochoa ER, Ramsanahie A, Alsberg E, Mooney D, Whang EE, et al. Tissue-engineered large intestine resembles native colon with appropriate in vitro physiology and architecture. Ann Surg 2003;238:35-41.
  41. Hecker L, Baar K, Dennis RG, Bitar KN. Development of a three-dimensional physiological model of the internal anal sphincter bioengineered in vitro from isolated smooth muscle cells. Am J Physiol Gastrointest Liver Physiol 2005;289:G188-96. https://doi.org/10.1152/ajpgi.00335.2004
  42. Somara S, Gilmont RR, Dennis RG, Bitar KN. Bioengineered internal anal sphincter derived from isolated human internal anal sphincter smooth muscle cells. Gastroenterology 2009;137:53-61. https://doi.org/10.1053/j.gastro.2009.03.036
  43. Raghavan S, Miyasaka EA, Hashish M, Somara S, Gilmont RR, Teitelbaum DH, et al. Successful implantation of physiologically functional bioengineered mouse internal anal sphincter. Am J Physiol Gastrointest Liver Physiol 2010;299:G430-9. https://doi.org/10.1152/ajpgi.00269.2009
  44. Miyasaka EA, Raghavan S, Gilmont RR, Mittal K, Somara S, Bitar KN, et al. In vivo growth of a bioengineered internal anal sphincter: comparison of growth factors for optimization of growth and survival. Pediatr Surg Int 2011;27:137-43. https://doi.org/10.1007/s00383-010-2786-z
  45. Raghavan S, Gilmont RR, Miyasaka EA, Somara S, Srinivasan S, Teitelbaum DH, et al. Successful implantation of bioengineered, intrinsically innervated, human internal anal sphincter. Gastroenterology 2011;141:310-9. https://doi.org/10.1053/j.gastro.2011.03.056
  46. Koch KL, Bitar KN, Fortunato JE. Tissue engineering for neuromuscular disorders of the gastrointestinal tract. World J Gastroenterol 2012;18:6918-25. https://doi.org/10.3748/wjg.v18.i47.6918

Cited by

  1. A review of application of stem cell therapy in the management of congenital heart disease vol.33, pp.9, 2020, https://doi.org/10.1080/14767058.2018.1520829
  2. Phenotypic and Functional Responses of Human Decidua Basalis Mesenchymal Stem/Stromal Cells to Lipopolysaccharide of Gram-Negative Bacteria vol.14, pp.None, 2021, https://doi.org/10.2147/sccaa.s332952