References
- Aktas, A. (2005), "Elastic-plastic stress analysis and plastic region expansion of transversely distributed loaded aluminum metal-matrix-laminated plates with a square hole", J. Reinf. Plast. Comp., 24(6), 597-608. https://doi.org/10.1177/0731684405045020
- Harkegard, G. and Mann, T. (2003), "Neuber prediction of elastic-plastic strain concentration in notched tensile specimens under large-scale yielding", J. Strain Anal. Eng., 38(1), 79-94. https://doi.org/10.1243/030932403762671917
- Kamaya, M. (2006), "Stress intensity factors of surface crack with undulated front", JSME Int. J. A-Solid. M., 49(4), 529-535. https://doi.org/10.1299/jsmea.49.529
- Kaminsky, M.M. (2007), Computational mechanics of composite materials, Springer.
- Karpov, E.B. (2002), "Stress concentration and fracture near a circular hole in composite elements of constructions", Ph.D. Dissertation, Novosibirsk State University, Russia.
- Khaldjigitov, A. (2002), "Numerical aspects of strain-space plasticity problems", Proceedings of the International Congress of Mathematicians, Beijing, August.
- Khaldjigitov, A. (2003), "Plasticity theories for transversely isotropic materials", Proceedings of COMPLAS VII 7th International Conference on Computational Plasticity, Barcelona, April.
- Khaldjigitov, A. and Adambaev U.I. (2004), "Numerical and mathematical modeling of elastic plastic transversally isotropic materials", Proceedings of the 11th European Conference of Composite materials, Rhodes, May-June.
- Korobeynikov, S.N. and Babichev, A.V. (2007), "Numerical simulation of dynamic deformation and buckling of nanostructures", Proceedings of ICF (International Congress of Fracture) Interquadrennial conference, Moscow, July.
- Lee, J., Lee, M.G., Barlat, F. and Kim, J.H. (2012), "Stress integration schemes for novel homogeneous anisotropic hardening model", Comput. Method. Appl. M., 247-248, 73-92. https://doi.org/10.1016/j.cma.2012.07.013
- Livieri, P. and Nicoletto, G. (2003), "Elasto-plastic strain concentration factors in finite thickness plates", J. Strain Anal. Eng., 38(1), 31-36. https://doi.org/10.1243/030932403762671863
- Nagaraj, K.A., Knudsen, E.C., Wells, D., McGill, P. and Swanson, G.R. (2008), "Determination of mixed-mode stress intensity factors, fracture toughness, and crack turning angle for anisotropic foam material", Int. J. Solids Struct., 45(18-19), 4936-4951. https://doi.org/10.1016/j.ijsolstr.2008.04.028
- Neuber, H. (1946), Theory of notch stresses, Edwards, London.
- Okumus, F. (2011), "Elasto-plastic stress analysis in silicon carbide fiber reinforced magnesium metal matrix composite with a square hole", Math. Comput. Appl., 16(1), 216-225.
- Pobedrya, B.E. (1984), Mechanics of composite materials, Springer.
- Rodriguez-Ramos, R., Yan, P., Lopez-Realpozo Juan, C., Guinovart-Diaz, R., Bravo-Castillero, J., Sebastian, G., Noureddine, A. and Haisam, O. (2005), "The transmission loss of curved laminates and sandwich composite panels", J. Acoust. Soc. Am., 118(2), 774-790. https://doi.org/10.1121/1.1932212
- Sayman, O., Akbulut, H. and Meric, C. (2000) "Elasto-plastic stress analysis of aluminum metal matrix composite laminated plates under in-plane loading", Comput. Struct., 75(1), 55-63. https://doi.org/10.1016/S0045-7949(99)00086-3
- Tlilan, H.M., Yousuke, S. and Tamotsu, M. (2005), "Effect of notch depth on strain-concentration factor of notched cylindrical bars under static tension", Eur. J. Mech. A-Solid., 24(3), 406-416 https://doi.org/10.1016/j.euromechsol.2005.02.001
- Van Der Meer, F.P. and Sluys, L.J. (2009), "Continuum models for the analysis of progressive failure in composite laminates", J. Comp. Mater., 43, 2131-2156. https://doi.org/10.1177/0021998309343054
- Zeng, Z. and Fatemi, A. (2001), "Elastic-plastic stress and strain behavior at notch roots under monotonic and cyclic loading", J. Strain Anal. Eng., 36(3), 287-300. https://doi.org/10.1243/0309324011514476
Cited by
- Elastic-plastic formulation for concrete encased sections interaction diagram tracing vol.19, pp.4, 2015, https://doi.org/10.12989/scs.2015.19.4.861
- Algorithm of solving the problem of small elastoplastic deformation of fiber composites by FEM vol.5, pp.3, 2020, https://doi.org/10.12989/acd.2020.5.3.305