References
- Abbasbandy, S. (2006a), "Iterated He's homotopy perturbation method for quadratic Riccati differential equation", Appl. Math. Comput., 175(1), 581-589. https://doi.org/10.1016/j.amc.2005.07.035
- Abbasbandy, S. (2006b), "Homotopy perturbation method for quadratic Riccati differential equation and comparision with Adomian's decomposition method", Appl. Math. Comput., 172(1), 485-490. https://doi.org/10.1016/j.amc.2005.02.014
- Aminikhah, H. and Hemmatnezhad, M. (2010), "An efficient method for quadratic Riccati differential equation", Commun. Nonlinear Sci. Numer. Simul., 15(4), 835-839. https://doi.org/10.1016/j.cnsns.2009.05.009
- Batiha, B. (2012), "A numeric-analytic method for approximating quadratic Riccati differential equation", Int. J. Appl. Math. Res., 1(1), 8-16.
- Bede, B. (2008), "Note on numerical solutions of fuzzy differential equations by predictor-corrector method", Inform. Sciences, 178(7), 1917-1922. https://doi.org/10.1016/j.ins.2007.11.016
- Biazar, J. and Eslami, M. (2010), "Differential transform method for quadratic Riccati differential equation", Int. J. Nonlinear Sci., 9(4), 444-447.
- Chang, S.L. and Zadeh, L.A. (1972), "On fuzzy mapping and control", IEEE T. Syst. Man Cy., 2(1), 30-34.
- Chakraverty, S. and Nayak, S. (2012), "Fuzzy finite element method for solving uncertain heat conduction problems", Coupled Syst. Mech., 1(4), 345-360. https://doi.org/10.12989/csm.2012.1.4.345
- Dubois, D. and Prade, H. (1982), "Towards fuzzy differential calculus: Part 3 differentiation", Fuzzy Set. Syst., 8(3), 225-233. https://doi.org/10.1016/S0165-0114(82)80001-8
- He, J. H. (1999), "Homotopy perturbation technique", Comput. Method. Appl. M., 178(3-4), 257-262. https://doi.org/10.1016/S0045-7825(99)00018-3
- He, J. H. (2000), "A coupling method of homotopy technique and a perturbation technique for nonlinear problems", Int. J. Nonlinear Mech., 35(1), 37-43. https://doi.org/10.1016/S0020-7462(98)00085-7
- Jaulin, L., Kieffer, M., Didrit, O. and Walter, E. (2001), Applied interval analysis, Springer.
- Kaleva, O. (1987), "Fuzzy differential equations", Fuzzy Set. Syst., 24(3), 301-317. https://doi.org/10.1016/0165-0114(87)90029-7
- Kaleva, O. (1990), "The Cauchy problem for fuzzy differential equations", Fuzzy Set. Syst., 35(3), 389-396. https://doi.org/10.1016/0165-0114(90)90010-4
- Ma, M., Friedman, M. and Kandel, A. (1999), "Numerical solutions of fuzzy differential equations", Fuzzy Set. Syst., 105(1), 133-138. https://doi.org/10.1016/S0165-0114(97)00233-9
- Seikkala, S. (1987), "On the fuzzy initial value problem", Fuzzy Set. Syst., 24(3), 319-330. https://doi.org/10.1016/0165-0114(87)90030-3
- Tan, Y. and Abbasbandy, S. (2008), "Homotopy analysis method for quadratic Riccati differential equation", Commun. Nonlinear Sci. Numer. Simul., 13(3), 539-546. https://doi.org/10.1016/j.cnsns.2006.06.006
- Tapaswini, S. and Chakraverty, S. (2013), "Numerical solution of n - th order fuzzy linear differential equations by homotopyperturbation method", Int. J. Comput. Appl., 64(6), 5-10.
- Tapaswini S. and Chakraverty S. (2012), "A new approach to fuzzy initial value problem by improved euler method", Int. J. Fuzzy Inform. Eng., 4(3), 293-312. https://doi.org/10.1007/s12543-012-0117-x
- Zimmermann, H.J. (2001), Fuzzy set theory and its application, Kluwer Academic Publishers, Boston/Dordrecht/London.
Cited by
- Dynamic response of imprecisely defined beam subject to various loads using Adomian decomposition method vol.24, 2014, https://doi.org/10.1016/j.asoc.2014.06.052