DOI QR코드

DOI QR Code

Approximate solution of fuzzy quadratic Riccati differential equations

  • Tapaswini, Smita (Department of Mathematics, National Institute of Technology Rourkela Odisha) ;
  • Chakraverty, S. (Department of Mathematics, National Institute of Technology Rourkela Odisha)
  • Received : 2013.07.21
  • Accepted : 2013.09.25
  • Published : 2013.09.25

Abstract

This paper targets to investigate the solution of fuzzy quadratic Riccati differential equations with various types of fuzzy environment using Homotopy Perturbation Method (HPM). Fuzzy convex normalized sets are used for the fuzzy parameter and variables. Obtained results are depicted in term of plots to show the efficiency of the proposed method.

Keywords

References

  1. Abbasbandy, S. (2006a), "Iterated He's homotopy perturbation method for quadratic Riccati differential equation", Appl. Math. Comput., 175(1), 581-589. https://doi.org/10.1016/j.amc.2005.07.035
  2. Abbasbandy, S. (2006b), "Homotopy perturbation method for quadratic Riccati differential equation and comparision with Adomian's decomposition method", Appl. Math. Comput., 172(1), 485-490. https://doi.org/10.1016/j.amc.2005.02.014
  3. Aminikhah, H. and Hemmatnezhad, M. (2010), "An efficient method for quadratic Riccati differential equation", Commun. Nonlinear Sci. Numer. Simul., 15(4), 835-839. https://doi.org/10.1016/j.cnsns.2009.05.009
  4. Batiha, B. (2012), "A numeric-analytic method for approximating quadratic Riccati differential equation", Int. J. Appl. Math. Res., 1(1), 8-16.
  5. Bede, B. (2008), "Note on numerical solutions of fuzzy differential equations by predictor-corrector method", Inform. Sciences, 178(7), 1917-1922. https://doi.org/10.1016/j.ins.2007.11.016
  6. Biazar, J. and Eslami, M. (2010), "Differential transform method for quadratic Riccati differential equation", Int. J. Nonlinear Sci., 9(4), 444-447.
  7. Chang, S.L. and Zadeh, L.A. (1972), "On fuzzy mapping and control", IEEE T. Syst. Man Cy., 2(1), 30-34.
  8. Chakraverty, S. and Nayak, S. (2012), "Fuzzy finite element method for solving uncertain heat conduction problems", Coupled Syst. Mech., 1(4), 345-360. https://doi.org/10.12989/csm.2012.1.4.345
  9. Dubois, D. and Prade, H. (1982), "Towards fuzzy differential calculus: Part 3 differentiation", Fuzzy Set. Syst., 8(3), 225-233. https://doi.org/10.1016/S0165-0114(82)80001-8
  10. He, J. H. (1999), "Homotopy perturbation technique", Comput. Method. Appl. M., 178(3-4), 257-262. https://doi.org/10.1016/S0045-7825(99)00018-3
  11. He, J. H. (2000), "A coupling method of homotopy technique and a perturbation technique for nonlinear problems", Int. J. Nonlinear Mech., 35(1), 37-43. https://doi.org/10.1016/S0020-7462(98)00085-7
  12. Jaulin, L., Kieffer, M., Didrit, O. and Walter, E. (2001), Applied interval analysis, Springer.
  13. Kaleva, O. (1987), "Fuzzy differential equations", Fuzzy Set. Syst., 24(3), 301-317. https://doi.org/10.1016/0165-0114(87)90029-7
  14. Kaleva, O. (1990), "The Cauchy problem for fuzzy differential equations", Fuzzy Set. Syst., 35(3), 389-396. https://doi.org/10.1016/0165-0114(90)90010-4
  15. Ma, M., Friedman, M. and Kandel, A. (1999), "Numerical solutions of fuzzy differential equations", Fuzzy Set. Syst., 105(1), 133-138. https://doi.org/10.1016/S0165-0114(97)00233-9
  16. Seikkala, S. (1987), "On the fuzzy initial value problem", Fuzzy Set. Syst., 24(3), 319-330. https://doi.org/10.1016/0165-0114(87)90030-3
  17. Tan, Y. and Abbasbandy, S. (2008), "Homotopy analysis method for quadratic Riccati differential equation", Commun. Nonlinear Sci. Numer. Simul., 13(3), 539-546. https://doi.org/10.1016/j.cnsns.2006.06.006
  18. Tapaswini, S. and Chakraverty, S. (2013), "Numerical solution of n - th order fuzzy linear differential equations by homotopyperturbation method", Int. J. Comput. Appl., 64(6), 5-10.
  19. Tapaswini S. and Chakraverty S. (2012), "A new approach to fuzzy initial value problem by improved euler method", Int. J. Fuzzy Inform. Eng., 4(3), 293-312. https://doi.org/10.1007/s12543-012-0117-x
  20. Zimmermann, H.J. (2001), Fuzzy set theory and its application, Kluwer Academic Publishers, Boston/Dordrecht/London.

Cited by

  1. Dynamic response of imprecisely defined beam subject to various loads using Adomian decomposition method vol.24, 2014, https://doi.org/10.1016/j.asoc.2014.06.052