DOI QR코드

DOI QR Code

Taxonomy of introduced commercial insect, Zophobas atratus (Coleoptera: Tenebrionidae) and a comparison of DNA barcoding with similar tenebrionids, Promethis valgipes and Tenebrio molitor in Korea

도입된 상업용 거저리(Zophobas atratus)의 분류 및 형태유사종 갈색거저리 (Tenebrio molitor)와 대왕거저리(Promethis valgipes)와의 DNA 바코드 특성 분석

  • Park, Hae Chul (Applied Entomology Division, National Academy of Agricultural Science, RDA) ;
  • Jung, Boo Hee (Korean Entomological Institute, Korea University) ;
  • Han, Taeman (Applied Entomology Division, National Academy of Agricultural Science, RDA) ;
  • Lee, Young Bo (Applied Entomology Division, National Academy of Agricultural Science, RDA) ;
  • Kim, Seong-Hyun (Applied Entomology Division, National Academy of Agricultural Science, RDA) ;
  • Kim, Nam Jeong (Applied Entomology Division, National Academy of Agricultural Science, RDA)
  • 박해철 (국립농업과학원 곤충산업과) ;
  • 정부희 (고려대학교 한국곤충연구소) ;
  • 한태만 (국립농업과학원 곤충산업과) ;
  • 이영보 (국립농업과학원 곤충산업과) ;
  • 김성현 (국립농업과학원 곤충산업과) ;
  • 김남정 (국립농업과학원 곤충산업과)
  • Received : 2013.09.23
  • Accepted : 2013.10.23
  • Published : 2013.11.30

Abstract

The superworm, as known the larva of Zophobas morio, has been officially imported from 2011 and bred commercially in Korea. But it is named as the corrected scientific name, Zophobas atratus by junior synonym throughout traditional taxonomy in this study and newly designated Korean name as 'a-me-ri-ca-wang-geo-jeo-ri' in terms of resource management. Z. atratus was compared with wild native tenebrionids, Promethis valgipes and a commercial reared Tenebrio molitor on the basis of DNA barcode analysis. As the results, the average genetic divergence was 21.4% between Z. atratus and P. valgipes, and 20.9% between Z. atratus and T. molitor. These large divergences imply these tenebrionids species can be easily identified by DNA barcodes. The results of genetic divergences within species also suggest that Korean populations of Z. atratus, having the same haplotype, might be introduced from the same area of foreign country. On the other hand, a population of T. molitor was separated into two distinct intra-specific groups with DNA barcoding gaps ranged from 1.17- 2.19%. We suppose that domestic breeding entities of T. molitor might be introduced and mixed from two different local groups. Through this study, we expect that classification for two tenebrionid introduced from foreign countries can be used for the management of insect resources in Korea.

2011년부터 수입되어 사육 유통되는 슈퍼밀웜의 국내 샘플들은 형태 분류학적 검토를 통하여 Zophobas atratus란 종으로 밝혀졌고, Z. morio란 학명은 이 종의 동물이 명임이 확인되었다. 이 외래종은 자원 관리측면에서 국명을 '아메리카왕거저리'로 신칭하였다. 이 종과 형태적으로 유사한 자생종 P. valgipes 및 사육종 T. molitor와 DNA 바코드 분석 결과, Zophobas atratus와 P. valgipes는 평균 21.4%, Zophobas atratus와 Z. morio는 20.9%의 염기분화율을 보여 DNA 바코드로 쉽게 종 동정할 수 있음을 확인하였다. Z. atratus의 국내집단은 모두 동일 일배체형을 갖고 있어 국외의 동일 지역 개체군이 국내로 유입된 것으로 추정된 반면에 Z. molitor는 동일 사육집단 내에서도 두 개의 종내 집단이 뚜렷이 구분되고 서로의 염기 분화율이 1.17 ~ 2.19%로 갭을 형성한 것으로 보아 국내 Z. molitor 사육개체들은 서로 다른 지역 집단이 혼입되어 대량 사육에 이용되어진 것으로 추정된다. 이번 연구를 통하여 분석된 상업적으로 도입, 이용되는 2종의 거저리류의 분류학적 기초 정보가 국내 곤충자원 관리를 위하여 유용하게 이용될 것으로 판단된다.

Keywords

References

  1. Animal and Plant Qurantine Agency. [Online] Insect pests and pet insects. http://www.qia.go.kr/plant/pest/plant_insec_rule.jsp#this.
  2. Bang SW, Kim MH, Rho TH (2004) Development of integrated management plan for abating the threats from invasive alien species in Korea. pp 313. Korean Environmental Institute, Seoul.
  3. Bednarova M, Borkovcova M, Komprda T (2013) Purine derivate content and amino acid profile in larval stages of three edible insects. J Sci Food Agric DOI 10.1002/jsfa.6198.
  4. Chen WT, Liu HL, Yao LG, Ye ZL, Guo YW (2012) Assay and comparison of chemical constituents of crude methanol extracts from different developmental stages of darkling beetle Zophobas morio (Coleoptera: Tenebrionidae). Acta Entomologica Sinica 5593, 357-360.
  5. Choi YC, Song HS (2011) Mass rearing and application technique of mealworm, Tenebrio molitor, pp 14-18. Applied entomology Division, NAAS Press, Korea.
  6. Ebeling W (1975) Urban entomology. Pest of stored food products. pp 275-309. Division of Agriculture Sciences, University of California. Berkeley, USA.
  7. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3, 294-299.
  8. Friederich U, Volland W (1992) Futtertierzucht (2 ed). pp 188. Ulmer, Stuttgart.
  9. Gebien, H (1941) Katalog der Tenebrioniden. Teil II. [Part.] Mitt Munch Entomol Ges 31: 331-362 (626-657), 803-834 (658-689), 1131-1146 (690-705).
  10. Hebert PDN, Cywinska A, Ball SL, deWaard JR (2003) Biological identifications through DNA barcodes. Proc R Soc Lond B 270, 313-321. https://doi.org/10.1098/rspb.2002.2218
  11. Ichikawa T, Sakamoto H (2013) A third type of defensive behavior in the tenebrionid beetle Zophobas atratus pupae. J Insect Sci 13(33), 1-12.
  12. Jabir MDAR, Razak SA, Vikineswary S (2012) Nutritive potential and utilization of super worm (Zophobas morio) meal in the diet of nile tilapia (Oreochromis niloticus) juvenile. Afr J Biotechnol 11, 6592-6598.
  13. Jahnke M (2005) Gregarina tibengae sp. n. (Apicomplexa: Eugregarinida) described from Zophobas atratus Fabricius, 1775 (Coleoptera: Tenebrionidae). Acta Protozool 44, 67-74.
  14. Jung BH (2012) Insect fauna of Korea 12, 5. Darkling beetles (Coleoptera: Tenebrionidae:Tenebrioninae). pp 123. Flora and Fauna of Korea, National Institute of Biological Resources Press, Korea.
  15. Ministry of Agriculture, Food and Rural Affairs. [Online] Information for laws. http://www.mafra.go.kr/list.jsp?group_id=2&menu_id=33&link_menu_id=47&division=H&board_kind=&board_skin_id=&parent_code=2&link_url=&depth=1&tab_yn=N&code=top.
  16. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, and Kumar S (2011) MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28, 2731-2739. https://doi.org/10.1093/molbev/msr121
  17. Tschinkel R (1984) Zophobas atratus (Fab.) and Z. rugipes Kirsch (Coleoptera: Tenebrionidae) are the same species. Coleop Bull 38(4), 325-333.
  18. Yen SH (2009) Comprehensive checklist and database reinforcement of exotic animals with high risk in Taiwan. Project Number: 101 Lin Fa-07.1-Paul44. pp.233. In: Council of Agriculture, Executive Yuan and its subordinate agencies overseeing technology programs 100 year detailing / Final report of single project (in Chinese).

Cited by

  1. Evaluation of Subchronic Oral Dose Toxicity of Freeze-Dried Skimmed Powder of Zophobas atratus Larvae (frpfdZAL) in Rats vol.9, pp.8, 2013, https://doi.org/10.3390/foods9080995
  2. 인공사료와 밀기울로 사육한 아메리카왕거저리 유충의 영양성분 비교분석 vol.30, pp.12, 2020, https://doi.org/10.5352/jls.2020.30.12.1109
  3. In Vivo Toxicity Study of Freeze-Dried Skimmed Powder of Zophobas atratus Larvae (frpfdZAL), a Novel Food Source vol.50, pp.5, 2013, https://doi.org/10.3746/jkfn.2021.50.5.437
  4. A Systematic Review on Viruses in Mass-Reared Edible Insect Species vol.13, pp.11, 2013, https://doi.org/10.3390/v13112280