DOI QR코드

DOI QR Code

Locally delivered antioxidant gel as an adjunct to nonsurgical therapy improves measures of oxidative stress and periodontal disease

  • Received : 2013.04.02
  • Accepted : 2013.06.04
  • Published : 2013.06.30

Abstract

Purpose: The present study has two aims; firstly, it attempts to verify the presence of oxidative stress by estimating the reactive oxygen species (ROS) levels in periodontal pockets ${\geq}5$ mm as compared to controls. The second aim is to evaluate the effect of lycopene as a locally delivered antioxidant gel on periodontal health and on the gingival crevicular fluid (GCF) levels of 8-hydroxydeoxyguanosine (8-OHdG), a marker of oxidative injury. Methods: Thirty-one subjects participated in this study. In the pretreatment phase, the ROS levels in pockets ${\geq}5$ mm were measured by flow cytometry. Three sites in each subject were randomly assigned into each of the following experimental groups: sham group, only scaling and root planing (SRP) was done; placebo group, local delivery of placebo gel after SRP; and lycopene group, local delivery of lycopene gel after SRP. Clinical parameters included recording site-specific measures of GCF 8-OHdG, plaque, gingivitis, probing depth, and clinical attachment level. Results: The gel, when delivered to the sites with oxidative stress, was effective in increasing clinical attachment and in reducing gingival inflammation, probing depth, and 8-OHdG levels as compared to the placebo and sham sites. Conclusions: From this trial conducted over a period of 6 months, it was found that locally delivered lycopene seems to be effective in reducing the measures of oxidative stress and periodontal disease.

Keywords

References

  1. Kiyoshima T, Enoki N, Kobayashi I, Sakai T, Nagata K, Wada H, et al. Oxidative stress caused by a low concentration of hydrogen peroxide induces senescence-like changes in mouse gingival fibroblasts. Int J Mol Med 2012;30:1007-12. https://doi.org/10.3892/ijmm.2012.1102
  2. Battino M, Bullon P, Wilson M, Newman H. Oxidative injury and inflammatory periodontal diseases: the challenge of anti-oxidants to free radicals and reactive oxygen species. Crit Rev Oral Biol Med 1999;10:458-76. https://doi.org/10.1177/10454411990100040301
  3. Borges I Jr, Moreira EA, Filho DW, de Oliveira TB, da Silva MB, Frode TS. Proinflammatory and oxidative stress markers in patients with periodontal disease. Mediators Inflamm 2007;2007:45794.
  4. Masi S, Salpea KD, Li K, Parkar M, Nibali L, Donos N, et al. Oxidative stress, chronic inflammation, and telomere length in patients with periodontitis. Free Radic Biol Med 2011;50:730-5. https://doi.org/10.1016/j.freeradbiomed.2010.12.031
  5. Marchetti E, Monaco A, Procaccini L, Mummolo S, Gatto R, Tete S, et al. Periodontal disease: the influence of metabolic syndrome. Nutr Metab (Lond) 2012;9:88. https://doi.org/10.1186/1743-7075-9-88
  6. Govindaraj P, Khan NA, Gopalakrishna P, Chandra RV, Vanniarajan A, Reddy AA, et al. Mitochondrial dysfunction and genetic heterogeneity in chronic periodontitis. Mitochondrion 2011;11:504-12. https://doi.org/10.1016/j.mito.2011.01.009
  7. Sugiyama S, Takahashi SS, Tokutomi FA, Yoshida A, Kobayashi K, Yoshino F, et al. Gingival vascular functions are altered in type 2 diabetes mellitus model and/or periodontitis model. J Clin Biochem Nutr 2012;51:108-13. https://doi.org/10.3164/jcbn.11-103
  8. Esen C, Alkan BA, Kirnap M, Akgul O, Isikoglu S, Erel O. The effects of chronic periodontitis and rheumatoid arthritis on serum and gingival crevicular fluid total antioxidant/oxidant status and oxidative stress index. J Periodontol 2012;83:773-9. https://doi.org/10.1902/jop.2011.110420
  9. Kawaguchi K, Matsumoto T, Kumazawa Y. Effects of antioxidant polyphenols on TNF-alpha-related diseases. Curr Top Med Chem 2011;11:1767-79. https://doi.org/10.2174/156802611796235152
  10. Soory M. Relevance of nutritional antioxidants in metabolic syndrome, ageing and cancer: potential for therapeutic targeting. Infect Disord Drug Targets 2009;9:400-14. https://doi.org/10.2174/187152609788922537
  11. Bagaitkar J, Williams LR, Renaud DE, Bemakanakere MR, Martin M, Scott DA, et al. Tobacco-induced alterations to Porphyromonas gingivalis-host interactions. Environ Microbiol 2009;11:1242-53. https://doi.org/10.1111/j.1462-2920.2008.01852.x
  12. Kornman KS, Page RC, Tonetti MS. The host response to the microbial challenge in periodontitis: assembling the players. Periodontol 2000 1997;14:33-53. https://doi.org/10.1111/j.1600-0757.1997.tb00191.x
  13. Darveau RP, Tanner A, Page RC. The microbial challenge in periodontitis. Periodontol 2000 1997;14:12-32. https://doi.org/10.1111/j.1600-0757.1997.tb00190.x
  14. Giannelli M, Chellini F, Margheri M, Tonelli P, Tani A. Effect of chlorhexidine digluconate on different cell types: a molecular and ultrastructural investigation. Toxicol In Vitro 2008;22:308-17. https://doi.org/10.1016/j.tiv.2007.09.012
  15. D'Aiuto F, Nibali L, Parkar M, Patel K, Suvan J, Donos N. Oxidative stress, systemic inflammation, and severe periodontitis. J Dent Res 2010;89:1241-6. https://doi.org/10.1177/0022034510375830
  16. Wood N, Johnson RB. The relationship between tomato intake and congestive heart failure risk in periodontitis subjects. J Clin Periodontol 2004;31:574-80. https://doi.org/10.1111/j.1600-051X.2004.00531.x
  17. Chandra RV, Prabhuji ML, Roopa DA, Ravirajan S, Kishore HC. Efficacy of lycopene in the treatment of gingivitis: a randomised, placebo-controlled clinical trial. Oral Health Prev Dent 2007;5:327-36.
  18. Chandra RV, Sandhya YP, Nagarajan S, Reddy BH, Naveen A, Murthy KR. Efficacy of lycopene as a locally delivered gel in the treatment of chronic periodontitis: smokers vs nonsmokers. Quintessence Int 2012;43:401-11.
  19. Maruyama T, Tomofuji T, Endo Y, Irie K, Azuma T, Ekuni D, et al. Supplementation of green tea catechins in dentifrices suppresses gingival oxidative stress and periodontal inflammation. Arch Oral Biol 2011;56:48-53. https://doi.org/10.1016/j.archoralbio.2010.08.015
  20. Fuhrman B, Elis A, Aviram M. Hypocholesterolemic effect of lycopene and beta-carotene is related to suppression of cholesterol synthesis and augmentation of LDL receptor activity in macrophages. Biochem Biophys Res Commun 1997;233:658-62. https://doi.org/10.1006/bbrc.1997.6520
  21. Dalcico R, de Menezes AM, Deocleciano OB, Oria RB, Vale ML, Ribeiro RA, et al. Protective Mechanisms of Simvastatin in Experimental Periodontal Disease. J Periodontol. 2012 Nov 26 [Epub]. http://dx.doi.org/10.1902/jop.2012.120114.
  22. Kara A, Akman S, Ozkanlar S, Tozoglu U, Kalkan Y, Canakci CF, et al. Immune modulatory and antioxidant effects of melatonin in experimental periodontitis in rats. Free Radic Biol Med 2013;55:21-6. https://doi.org/10.1016/j.freeradbiomed.2012.11.002
  23. Ku SK, Cho HR, Sung YS, Kang SJ, Lee YJ. Effects of calcium gluconate on experimental periodontitis and alveolar bone loss in rats. Basic Clin Pharmacol Toxicol 2011;108:241-50. https://doi.org/10.1111/j.1742-7843.2010.00646.x
  24. Di Mascio P, Kaiser S, Sies H. Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch Biochem Biophys 1989;274:532-8. https://doi.org/10.1016/0003-9861(89)90467-0
  25. Canakci CF, Cicek Y, Yildirim A, Sezer U, Canakci V. Increased levels of 8-hydroxydeoxyguanosine and malondialdehyde and its relationship with antioxidant enzymes in saliva of periodontitis patients. Eur J Dent 2009;3:100-6.
  26. Konopka T, Krol K, Kopec W, Gerber H. Total antioxidant status and 8-hydroxy-2's-deoxyguanosine levels in gingival and peripheral blood of periodontitis patients. Arch Immunol Ther Exp (Warsz) 2007;55:417-22. https://doi.org/10.1007/s00005-007-0047-1
  27. Turesky S, Gilmore ND, Glickman I. Reduced plaque formation by the chloromethyl analogue of victamine C. J Periodontol 1970;41:41-3. https://doi.org/10.1902/jop.1970.41.1.41
  28. Lobene RR, Weatherford T, Ross NM, Lamm RA, Menaker L. A modified gingival index for use in clinical trials. Clin Prev Dent 1986;8:3-6.
  29. Patel SA, Patel NM, Patel MM. Spectrophotometric methods for the estimation of cephalexin in tablet dosage forms. Indian J Pharma Sci 2006;68:278-80. https://doi.org/10.4103/0250-474X.25740
  30. Tuter G, Kurtis B, Serdar M. Interleukin-1beta and thiobarbituric acid reactive substance (TBARS) levels after phase I periodontal therapy in patients with chronic periodontitis. J Periodontol 2001;72:883-8. https://doi.org/10.1902/jop.2001.72.7.883
  31. Battino M, Ferreiro MS, Fattorini D, Bullon P. In vitro antioxidant activities of mouthrinses and their components. J Clin Periodontol 2002;29:462-7. https://doi.org/10.1034/j.1600-051X.2002.290512.x
  32. Neiva RF, Steigenga J, Al-Shammari KF, Wang HL. Effects of specific nutrients on periodontal disease onset, progression and treatment. J Clin Periodontol 2003;30:579-89. https://doi.org/10.1034/j.1600-051X.2003.00354.x
  33. Watts T. Periodontal treatment and glycemic control in diabetic patients: the problem of a possible Hawthorne effect. J Dent Res 2006;85:294. https://doi.org/10.1177/154405910608500401
  34. Bansal K, Rawat MK, Jain A, Rajput A, Chaturvedi TP, Singh S. Development of satranidazole mucoadhesive gel for the treatment of periodontitis. AAPS PharmSciTech 2009;10:716-23. https://doi.org/10.1208/s12249-009-9260-z
  35. Halliwell B, Whiteman M. Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol 2004;142:231-55. https://doi.org/10.1038/sj.bjp.0705776
  36. Palozza P, Parrone N, Simone R, Catalano A. Role of lycopene in the control of ROS-mediated cell growth: implications in cancer prevention. Curr Med Chem 2011;18:1846-60. https://doi.org/10.2174/092986711795496845
  37. Dede FO, Ozden FO, Avci B. 8-hydroxy-deoxyguanosine levels in gingival crevicular fluid and saliva in patients with chronic periodontitis after initial periodontal treatment. J Periodontol 2013;84:821-8. https://doi.org/10.1902/jop.2012.120195
  38. Jakubowski W, Bartosz G. 2,7-dichlorofluorescin oxidation and reactive oxygen species: what does it measure? Cell Biol Int 2000;24:757-60. https://doi.org/10.1006/cbir.2000.0556
  39. Wolfe KL, Liu RH. Structure-activity relationships of flavonoids in the cellular antioxidant activity assay. J Agric Food Chem 2008;56:8404-11. https://doi.org/10.1021/jf8013074
  40. Myhre O, Andersen JM, Aarnes H, Fonnum F. Evaluation of the probes $2^{\prime},7^{\prime}$-dichlorofluorescin diacetate, luminol, and lucigenin as indicators of reactive species formation. Biochem Pharmacol 2003;65:1575-82. https://doi.org/10.1016/S0006-2952(03)00083-2

Cited by

  1. LPS from P. gingivalis and Hypoxia Increases Oxidative Stress in Periodontal Ligament Fibroblasts and Contributes to Periodontitis vol.2014, pp.None, 2013, https://doi.org/10.1155/2014/986264
  2. Effects of an Ascorbic Acid-Derivative Dentifrice in Patients With Gingivitis: A Double-Masked, Randomized, Controlled Clinical Trial vol.86, pp.1, 2013, https://doi.org/10.1902/jop.2014.140138
  3. Systemic lycopene as an adjunct to scaling and root planing in chronic periodontitis patients with type 2 diabetes mellitus vol.5, pp.suppl1, 2013, https://doi.org/10.4103/2231-0762.156520
  4. Oxidative Stress and Antioxidants in the Diagnosis and Therapy of Periodontitis vol.8, pp.None, 2013, https://doi.org/10.3389/fphys.2017.01055
  5. Effect of scaling and root planing on levels of 8-hydroxydeoxyguanosine in gingival crevicular fluid of chronic periodontitis patients with and without Type II diabetes mellitus vol.21, pp.3, 2017, https://doi.org/10.4103/jisp.jisp_184_17
  6. Antioxidant therapy (lycopene and green tea extract) in periodontal disease: A promising paradigm vol.23, pp.1, 2013, https://doi.org/10.4103/jisp.jisp_277_18
  7. Lycopene solid lipid microparticles with enhanced effect on gingival crevicular fluid protein carbonyl as a biomarker of oxidative stress in patients with chronic periodontitis vol.29, pp.4, 2013, https://doi.org/10.1080/08982104.2019.1566243
  8. Salivary Redox Biomarkers in the Course of Caries and Periodontal Disease vol.10, pp.18, 2013, https://doi.org/10.3390/app10186240
  9. Functionalization with a Polyphenol-Rich Pomace Extract Empowers a Ceramic Bone Filler with In Vitro Antioxidant, Anti-Inflammatory, and Pro-Osteogenic Properties vol.12, pp.2, 2021, https://doi.org/10.3390/jfb12020031