References
- Van Der Bruggen. P., Y. Zhang, P. Chaux, V. Stroobant, C. Panichelli, E. S. Schultz, J. Chapiro, B. J. Van Den Eynde, F. Brasseur, and T. Boon. 2002. Tumor-specific shared antigenic peptides recognized by human T cells. Immunol. Rev. 188: 51-64. https://doi.org/10.1034/j.1600-065X.2002.18806.x
- Huang, A. Y., P. Golumbek, M. Ahmadzadeh, E. Jaffee, D. Pardoll, and H. Levitsky. 1994. Role of bone marrow-derived cells in presenting MHC class I-restricted tumor antigens. Science 264: 961-965. https://doi.org/10.1126/science.7513904
- Harding, C. V. 1995. Phagocytic processing of antigens for presentation by MHC molecules. Trends Cell Biol. 5: 105-109 https://doi.org/10.1016/S0962-8924(00)88959-X
- Sigal, L. J., S. Crotty, R. Andino, K. L. Rock. 1999. Cytotoxic T-cell immunity to virus-infected non-haematopoietic cells requires presentation of exogenous antigen. Nature 398: 77-80. https://doi.org/10.1038/18038
- Heath, W. R. and F. R. Carbone. 2001. Cross-presentation, dendritic cells, tolerance and immunity. Annu. Rev. Immunol. 19: 47-64. https://doi.org/10.1146/annurev.immunol.19.1.47
- Carbone, F. R., C. Kurts, S. R. Bennett, J. F. Miller, and W. R. Heath. 1998. Cross-presentation: a general mechanism for CTL immunity and tolerance. Immunol. Today 19: 368-373. https://doi.org/10.1016/S0167-5699(98)01301-2
- Shen, H., A. L. Ackerman, V. Cody, A. Giodini, E. R. Hinson, P. Cresswell, R. L. Edelson, W. M. Saltzman, and D. J. Hanlon. 2006. Enhanced and prolonged cross-presentation following endosomal escape of exogenous antigens encapsulated in biodegradable nanoparticles. Immunology 117: 78-88. https://doi.org/10.1111/j.1365-2567.2005.02268.x
- Gerelchuluun, T., Y. H. Lee, Y. R. Lee, S. A. Im, Song S, J. S. Park, K. Han, K. Kim, and C. K. Lee. 2007. Dendritic cells process antigens encapsulated in a biodegradable polymer, poly(D,L-lactide-co-glycolide), via an alternate class I MHC processing pathway. Arch. Pharm. Res. 30: 1440-1446. https://doi.org/10.1007/BF02977369
- Lee, Y. R., Y. H. Lee, S. A. Im, I. H. Yang, G. W. Ahn, K. Kim, and C. K. Lee. 2010. Biodegradable nanoparticles containing TLR3 or TLR9 agonists together with antigen enhance MHC-restricted presentation of the antigen. Arch. Pharm. Res. 33: 1859-1866. https://doi.org/10.1007/s12272-010-1119-z
- Schliehe, C., C. Redaelli, S. Engelhardt, M. Fehlings, M. Mueller, N. van Rooijen, M. Thiry, K. Hildner, H. Weller, and M. Groettrup. 2011. CD8- dendritic cells and macrophages cross-present poly(D,L-lactate-co-glycolate) acid microsphereencapsulated antigen in vivo. J. Immunol. 187: 2112-2121. https://doi.org/10.4049/jimmunol.1002084
- Newman, K. D., D. L. Sosnowski, G. S. Kwon, and J. Samuel. 1998. Delivery of MUC1 mucin peptide by Poly (d,l-lactic-co-glycolic acid) microspheres induces type 1 T helper immune responses. J. Pharm. Sci. 87: 1421-1427. https://doi.org/10.1021/js980070s
- Venkataprasad, N., A. G. Coombes, M. Singh, M. Rohde, K. Wilkinson, F. Hudecz, S. S. Davis, and H. M. Vordermeier. 1999. Induction of cellular immunity to a mycobacterial antigen adsorbed on lamellar particles of lactide polymers. Vaccine 17: 1814-1819. https://doi.org/10.1016/S0264-410X(98)00372-7
- Lee, Y. R., I. H. Yang, Y. H. Lee, S. A. Im, S. Song, H. Li, K. Han, K. Kim, S. K. Eo, and C. K. Lee. 2005. Cyclosporin A and tacrolimus, but not rapamycin, inhibit MHC-restricted antigen presentation pathways in dendritic cells. Blood 105: 3951-3955. https://doi.org/10.1182/blood-2004-10-3927
- Panyam, J. and V. Labhasetwar. 2003. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug Deliv. Rev. 55: 329-347. https://doi.org/10.1016/S0169-409X(02)00228-4
- Moore, M. W., F. R. Carbone, and M. J. Bevan. 1988. Introduction of soluble protein into the class I pathway of antigen processing and presentation. Cell 54: 777-785. https://doi.org/10.1016/S0092-8674(88)91043-4
- Panyam, J. and V. Labhasetwar. 2003. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug Deliv. Rev. 55: 329-347. https://doi.org/10.1016/S0169-409X(02)00228-4
- Pfeifer, J. D., M. J. Wick, R. L. Roberts, K. Findlay, S. J. Normark, and C. V. Harding. 1993. Phagocytic processing of bacterial antigens for class I MHC presentation to T cells. Nature 361: 359-362. https://doi.org/10.1038/361359a0
- Elamanchili, P., M. Diwan, M, Cao, and J. Samuel. 2004. Characterization of poly(D,L-lactic-co-glycolic acid) based nanoparticulate system for enhanced delivery of antigens to dendritic cells. Vaccine 22: 2406-2412. https://doi.org/10.1016/j.vaccine.2003.12.032
- Lee, Y. H., Y. R. Lee, K. H. Kim, S. A. Im, S. Song, M. K. Lee, Y. Kim, J. T. Hong, K. Kim, and C. K. Lee. 2011. Baccatin III, a synthetic precursor of taxol, enhances MHC-restricted antigen presentation in dendritic cells. Int. Immunopharmacol. 11: 985-991. https://doi.org/10.1016/j.intimp.2011.02.013
- Lee, Y. R., Y. H. Lee, S. A. Im, K. Kim, and C. K. Lee. 2011. Formulation and characterization of antigen-loaded PLGA nanoparticles for efficient cross-priming of the antigen. Immune Netw. 11: 163-168. https://doi.org/10.4110/in.2011.11.3.163
Cited by
- Nanoengineered strategies to optimize dendritic cells for gastrointestinal tumor immunotherapy: from biology to translational medicine vol.9, pp.14, 2013, https://doi.org/10.2217/nnm.14.115
- Processed Aloe vera Gel Ameliorates Cyclophosphamide-Induced Immunotoxicity vol.15, pp.11, 2013, https://doi.org/10.3390/ijms151119342
- Poly(lactic acid) and poly(lactic-co-glycolic acid) particles as versatile carrier platforms for vaccine delivery vol.9, pp.17, 2013, https://doi.org/10.2217/nnm.14.156
- Peptide/protein vaccine delivery system based on PLGA particles vol.12, pp.3, 2013, https://doi.org/10.1080/21645515.2015.1102804
- Mutagenicity and Immune Toxicity of Emulsion-type Sausage Cured with Plasma-treated Water vol.36, pp.4, 2016, https://doi.org/10.5851/kosfa.2016.36.4.494
- Biodegradable Polymeric Nanoparticles-Based Vaccine Adjuvants for Lymph Nodes Targeting vol.4, pp.4, 2013, https://doi.org/10.3390/vaccines4040034
- Co-delivery of Dual Toll-Like Receptor Agonists and Antigen in Poly(Lactic-Co-Glycolic) Acid/Polyethylenimine Cationic Hybrid Nanoparticles Promote Efficient In Vivo Immune Responses vol.8, pp.None, 2017, https://doi.org/10.3389/fimmu.2017.01077
- Adjuvant Activity Enhanced by Cross-Linked CpG-Oligonucleotides in β-Glucan Nanogel and Its Antitumor Effect vol.28, pp.2, 2017, https://doi.org/10.1021/acs.bioconjchem.6b00675
- Recent advances on biodegradable polymeric carrier-based mucosal immunization: an overview vol.46, pp.3, 2013, https://doi.org/10.1080/21691401.2017.1345927
- PLGA particulate subunit tuberculosis vaccines promote humoral and Th17 responses but do not enhance control of Mycobacterium tuberculosis infection vol.13, pp.3, 2013, https://doi.org/10.1371/journal.pone.0194620
- Nanoparticle vaccines against viral infections vol.163, pp.9, 2013, https://doi.org/10.1007/s00705-018-3856-0
- Harnessing Dendritic Cells for Poly (D,L-lactide- co -glycolide) Microspheres (PLGA MS)—Mediated Anti-tumor Therapy vol.10, pp.None, 2013, https://doi.org/10.3389/fimmu.2019.00707
- Tumor growth inhibition by mSTEAP peptide nanovaccine inducing augmented CD8+ T cell immune responses vol.9, pp.6, 2013, https://doi.org/10.1007/s13346-019-00652-z
- Nanoparticle-based vaccine development and evaluation against viral infections in pigs vol.50, pp.1, 2013, https://doi.org/10.1186/s13567-019-0712-5
- Human Salivary Histatin-1-Functionalized Gelatin Methacrylate Hydrogels Promote the Regeneration of Cartilage and Subchondral Bone in Temporomandibular Joints vol.14, pp.5, 2021, https://doi.org/10.3390/ph14050484