DOI QR코드

DOI QR Code

Induction of Potent Antigen-specific Cytotoxic T Cell Response by PLGA-nanoparticles Containing Antigen and TLR Agonist

  • Lee, Young-Ran (College of Pharmacy, Chungbuk National University) ;
  • Lee, Young-Hee (College of Pharmacy, Chungbuk National University) ;
  • Kim, Ki-Hyang (College of Pharmacy, Chungbuk National University) ;
  • Im, Sun-A (College of Pharmacy, Chungbuk National University) ;
  • Lee, Chong-Kil (College of Pharmacy, Chungbuk National University)
  • Received : 2013.01.18
  • Accepted : 2013.02.04
  • Published : 2013.02.28

Abstract

Previously we showed that biodegradable nanoparticles containing poly-IC or CpG oligodeoxynucleotide (ODN) together with ovalbumin (OVA) were efficient at inducing MHC-restricted presentation of OVA peptides in dendritic cells. The CTL-inducing activities of the nanoparticles were examined in the present study. Nanoparticles containing poly-IC or CpG ODN together with OVA were prepared using biodegradable polymer poly(D,L-lactic acid-co-glycolic acid), and then were opsonized with mouse IgG. The nanoparticles were injected into the tail vein of mice, and 7 days later the OVA-specific CTL activities were measured using an in vivo CTL assay. Immunization of mice with the nanoparticles containing poly-IC or CpG ODN together with OVA elicited potent OVA-specific CTL activity compared to those containing OVA only. In accordance with these results, nanoparticles containing poly-IC or CpG ODN together with OVA exerted potent antitumor activity in mice that were subcutaneously implanted with EG7.OVA tumor cells. These results show that encapsulation of poly-IC or CpG ODN together with antigen in biodegradable nanoparticles is an effective approach for the induction of potent antigen-specific CTL responses in vivo.

Keywords

References

  1. Van Der Bruggen. P., Y. Zhang, P. Chaux, V. Stroobant, C. Panichelli, E. S. Schultz, J. Chapiro, B. J. Van Den Eynde, F. Brasseur, and T. Boon. 2002. Tumor-specific shared antigenic peptides recognized by human T cells. Immunol. Rev. 188: 51-64. https://doi.org/10.1034/j.1600-065X.2002.18806.x
  2. Huang, A. Y., P. Golumbek, M. Ahmadzadeh, E. Jaffee, D. Pardoll, and H. Levitsky. 1994. Role of bone marrow-derived cells in presenting MHC class I-restricted tumor antigens. Science 264: 961-965. https://doi.org/10.1126/science.7513904
  3. Harding, C. V. 1995. Phagocytic processing of antigens for presentation by MHC molecules. Trends Cell Biol. 5: 105-109 https://doi.org/10.1016/S0962-8924(00)88959-X
  4. Sigal, L. J., S. Crotty, R. Andino, K. L. Rock. 1999. Cytotoxic T-cell immunity to virus-infected non-haematopoietic cells requires presentation of exogenous antigen. Nature 398: 77-80. https://doi.org/10.1038/18038
  5. Heath, W. R. and F. R. Carbone. 2001. Cross-presentation, dendritic cells, tolerance and immunity. Annu. Rev. Immunol. 19: 47-64. https://doi.org/10.1146/annurev.immunol.19.1.47
  6. Carbone, F. R., C. Kurts, S. R. Bennett, J. F. Miller, and W. R. Heath. 1998. Cross-presentation: a general mechanism for CTL immunity and tolerance. Immunol. Today 19: 368-373. https://doi.org/10.1016/S0167-5699(98)01301-2
  7. Shen, H., A. L. Ackerman, V. Cody, A. Giodini, E. R. Hinson, P. Cresswell, R. L. Edelson, W. M. Saltzman, and D. J. Hanlon. 2006. Enhanced and prolonged cross-presentation following endosomal escape of exogenous antigens encapsulated in biodegradable nanoparticles. Immunology 117: 78-88. https://doi.org/10.1111/j.1365-2567.2005.02268.x
  8. Gerelchuluun, T., Y. H. Lee, Y. R. Lee, S. A. Im, Song S, J. S. Park, K. Han, K. Kim, and C. K. Lee. 2007. Dendritic cells process antigens encapsulated in a biodegradable polymer, poly(D,L-lactide-co-glycolide), via an alternate class I MHC processing pathway. Arch. Pharm. Res. 30: 1440-1446. https://doi.org/10.1007/BF02977369
  9. Lee, Y. R., Y. H. Lee, S. A. Im, I. H. Yang, G. W. Ahn, K. Kim, and C. K. Lee. 2010. Biodegradable nanoparticles containing TLR3 or TLR9 agonists together with antigen enhance MHC-restricted presentation of the antigen. Arch. Pharm. Res. 33: 1859-1866. https://doi.org/10.1007/s12272-010-1119-z
  10. Schliehe, C., C. Redaelli, S. Engelhardt, M. Fehlings, M. Mueller, N. van Rooijen, M. Thiry, K. Hildner, H. Weller, and M. Groettrup. 2011. CD8- dendritic cells and macrophages cross-present poly(D,L-lactate-co-glycolate) acid microsphereencapsulated antigen in vivo. J. Immunol. 187: 2112-2121. https://doi.org/10.4049/jimmunol.1002084
  11. Newman, K. D., D. L. Sosnowski, G. S. Kwon, and J. Samuel. 1998. Delivery of MUC1 mucin peptide by Poly (d,l-lactic-co-glycolic acid) microspheres induces type 1 T helper immune responses. J. Pharm. Sci. 87: 1421-1427. https://doi.org/10.1021/js980070s
  12. Venkataprasad, N., A. G. Coombes, M. Singh, M. Rohde, K. Wilkinson, F. Hudecz, S. S. Davis, and H. M. Vordermeier. 1999. Induction of cellular immunity to a mycobacterial antigen adsorbed on lamellar particles of lactide polymers. Vaccine 17: 1814-1819. https://doi.org/10.1016/S0264-410X(98)00372-7
  13. Lee, Y. R., I. H. Yang, Y. H. Lee, S. A. Im, S. Song, H. Li, K. Han, K. Kim, S. K. Eo, and C. K. Lee. 2005. Cyclosporin A and tacrolimus, but not rapamycin, inhibit MHC-restricted antigen presentation pathways in dendritic cells. Blood 105: 3951-3955. https://doi.org/10.1182/blood-2004-10-3927
  14. Panyam, J. and V. Labhasetwar. 2003. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug Deliv. Rev. 55: 329-347. https://doi.org/10.1016/S0169-409X(02)00228-4
  15. Moore, M. W., F. R. Carbone, and M. J. Bevan. 1988. Introduction of soluble protein into the class I pathway of antigen processing and presentation. Cell 54: 777-785. https://doi.org/10.1016/S0092-8674(88)91043-4
  16. Panyam, J. and V. Labhasetwar. 2003. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug Deliv. Rev. 55: 329-347. https://doi.org/10.1016/S0169-409X(02)00228-4
  17. Pfeifer, J. D., M. J. Wick, R. L. Roberts, K. Findlay, S. J. Normark, and C. V. Harding. 1993. Phagocytic processing of bacterial antigens for class I MHC presentation to T cells. Nature 361: 359-362. https://doi.org/10.1038/361359a0
  18. Elamanchili, P., M. Diwan, M, Cao, and J. Samuel. 2004. Characterization of poly(D,L-lactic-co-glycolic acid) based nanoparticulate system for enhanced delivery of antigens to dendritic cells. Vaccine 22: 2406-2412. https://doi.org/10.1016/j.vaccine.2003.12.032
  19. Lee, Y. H., Y. R. Lee, K. H. Kim, S. A. Im, S. Song, M. K. Lee, Y. Kim, J. T. Hong, K. Kim, and C. K. Lee. 2011. Baccatin III, a synthetic precursor of taxol, enhances MHC-restricted antigen presentation in dendritic cells. Int. Immunopharmacol. 11: 985-991. https://doi.org/10.1016/j.intimp.2011.02.013
  20. Lee, Y. R., Y. H. Lee, S. A. Im, K. Kim, and C. K. Lee. 2011. Formulation and characterization of antigen-loaded PLGA nanoparticles for efficient cross-priming of the antigen. Immune Netw. 11: 163-168. https://doi.org/10.4110/in.2011.11.3.163

Cited by

  1. Nanoengineered strategies to optimize dendritic cells for gastrointestinal tumor immunotherapy: from biology to translational medicine vol.9, pp.14, 2013, https://doi.org/10.2217/nnm.14.115
  2. Processed Aloe vera Gel Ameliorates Cyclophosphamide-Induced Immunotoxicity vol.15, pp.11, 2013, https://doi.org/10.3390/ijms151119342
  3. Poly(lactic acid) and poly(lactic-co-glycolic acid) particles as versatile carrier platforms for vaccine delivery vol.9, pp.17, 2013, https://doi.org/10.2217/nnm.14.156
  4. Peptide/protein vaccine delivery system based on PLGA particles vol.12, pp.3, 2013, https://doi.org/10.1080/21645515.2015.1102804
  5. Mutagenicity and Immune Toxicity of Emulsion-type Sausage Cured with Plasma-treated Water vol.36, pp.4, 2016, https://doi.org/10.5851/kosfa.2016.36.4.494
  6. Biodegradable Polymeric Nanoparticles-Based Vaccine Adjuvants for Lymph Nodes Targeting vol.4, pp.4, 2013, https://doi.org/10.3390/vaccines4040034
  7. Co-delivery of Dual Toll-Like Receptor Agonists and Antigen in Poly(Lactic-Co-Glycolic) Acid/Polyethylenimine Cationic Hybrid Nanoparticles Promote Efficient In Vivo Immune Responses vol.8, pp.None, 2017, https://doi.org/10.3389/fimmu.2017.01077
  8. Adjuvant Activity Enhanced by Cross-Linked CpG-Oligonucleotides in β-Glucan Nanogel and Its Antitumor Effect vol.28, pp.2, 2017, https://doi.org/10.1021/acs.bioconjchem.6b00675
  9. Recent advances on biodegradable polymeric carrier-based mucosal immunization: an overview vol.46, pp.3, 2013, https://doi.org/10.1080/21691401.2017.1345927
  10. PLGA particulate subunit tuberculosis vaccines promote humoral and Th17 responses but do not enhance control of Mycobacterium tuberculosis infection vol.13, pp.3, 2013, https://doi.org/10.1371/journal.pone.0194620
  11. Nanoparticle vaccines against viral infections vol.163, pp.9, 2013, https://doi.org/10.1007/s00705-018-3856-0
  12. Harnessing Dendritic Cells for Poly (D,L-lactide- co -glycolide) Microspheres (PLGA MS)—Mediated Anti-tumor Therapy vol.10, pp.None, 2013, https://doi.org/10.3389/fimmu.2019.00707
  13. Tumor growth inhibition by mSTEAP peptide nanovaccine inducing augmented CD8+ T cell immune responses vol.9, pp.6, 2013, https://doi.org/10.1007/s13346-019-00652-z
  14. Nanoparticle-based vaccine development and evaluation against viral infections in pigs vol.50, pp.1, 2013, https://doi.org/10.1186/s13567-019-0712-5
  15. Human Salivary Histatin-1-Functionalized Gelatin Methacrylate Hydrogels Promote the Regeneration of Cartilage and Subchondral Bone in Temporomandibular Joints vol.14, pp.5, 2021, https://doi.org/10.3390/ph14050484