Multi-scale Crack Analysis Using the Generalized Finite Element Method

일반유한요소법을 이용한 다중스케일 균열해석

  • Published : 2013.12.30

Abstract

Keywords

References

  1. Oden, J.T., Patra, A. and Feng, Y.S. (1992) An hp adaptive strategy. In A. K. Noor, editor, Adaptive, Multilevel and Hierarchical Computational Strategies, ASME, 157, pp.23-46.
  2. Babuska, I., and Melenk, J.M. (1997) The partition of unity finite element method, International Journal for Numerical Methods in Engineering, 40, pp.727-758. https://doi.org/10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO;2-N
  3. Oden, J.T., Duarte, C.A. and Zienkiewicz, O.C.. (1998) A new cloud-based hp finite element method. Computer Methods in Appled Mechanics and Engineering, 153, pp.117-126. https://doi.org/10.1016/S0045-7825(97)00039-X
  4. Duarte, C.A., Babuska, I. and Oden, J.T. (2000) Generalized finite element methods for three dimensional structural mechanics problems. Computers and Structures, 77, pp.215-232. https://doi.org/10.1016/S0045-7949(99)00211-4
  5. Moes, N., Dolbow, J., and Belytschko, T. (1999) A finite element method for crack growth without remeshing International Journal for Numerical Methods in Engineering, 46, pp.131-150. https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
  6. Sukumar, N., Moes, N., Moran, B. and Belytschko, T. (2000) Extended finite element method for three-dimensional crack modelling, International Journal for Numerical Methods in Engineering, 48, pp.549-570.
  7. Belytschko, T., Gracie, R. and Ventura, G. (2009) A review of extended/generalized finite element methods for material modeling, Modelling and Simulations in Materials Science and Engineering, 17.
  8. Fries, T.-P. and Belytschko, T. (2010) The extended/generalized finite element method: An overview of the method and its applications. International Journal for Numerical Methods in Engineering, 84(3), pp.253-304.
  9. Duarte, C.A. and Kim, D.-J. (2008) Analysis and Applications of a Generalized finite element method with global-local enrichment functions Computer Methods in Applied Mechanics and Engineering, 197(6-8), pp.487-504. https://doi.org/10.1016/j.cma.2007.08.017
  10. Kim, D.-J., Pereira, J.P. and Duarte, C.A. (2010) Analysis of three-dimensional fracture mechanics problems: A two-scale approach using coarse generalized FEM meshes. International Journal for Numerical Methods in Engineering, 81(3), pp.335-365.
  11. Gupta, P., Pereira, J.P., Kim, D.-J., Duarte, C.A. and Eason, T. (2012) Analysis of three-dimensional fracture mechanics problems: A non-intrusive approach using a generalized finite element, Engineering Fracutre Mechanics, 90, pp.41-64. https://doi.org/10.1016/j.engfracmech.2012.04.014
  12. Kim, D.-J., Duarte, C.A. and N.A. Sobh (2011) Parallel simulations of three-dimensional cracks using GFEM. Computational Mechanics, 47, pp.265-282. https://doi.org/10.1007/s00466-010-0546-5
  13. Kim, D.-J., Duarte, C.A. and S.P. Proenca (2012) A generalized finite element method with global-local enrichment functions for confined plasticity problems. Computational Mechanics, 50, pp.563-578. https://doi.org/10.1007/s00466-012-0689-7