DOI QR코드

DOI QR Code

중금속 오염토양의 복원기술에 대한 고찰

Review for Remediation Techniques of Contaminated Soil with Heavy Metals

  • 전충 (강릉원주대학교 생명화학공학과)
  • Jeon, Choong (Department of Biochemical Engineering, Gangneung-Wonju National University)
  • 발행 : 2013.09.30

초록

중금속에 의한 토양오염문제는 주로 폐 금속광산의 주변 농경지등에서 발생되어져 왔으며 이를 해결하기위한 비용은 수질이나 대기오염에 비해서 훨씬 크며 시간도 많이 소요되어진다고 알려져 있다. 지금까지 중금속으로 오염된 토양을 복원시키기 위한 경제적이고 실용적인 많은 기술들이 개발되어지고 제안되어져 왔다. 그래서 본 연구에서는 최근까지 국내/외에서 개발되어지거나 실용화되어지고 있는 다양한 기술들의 특성 및 장 단점 등에 대하여 고찰하고자 한다.

It is well known that problem for contaminated soil with heavy metals is mainly produced from agricultural land around abandoned metal mine and the cost to solve them is much higher than those of water and air pollution in addition, it takes much more time to clarify the contaminated soil. Until now, economical and practical many techniques to remediate contaminated soils with heavy metals have been developed and proposed. Therefore, in this study, characteristic, merit and weakness for various techniques which are developing and commercializing recently in domestic/foreign country will be reviewed.

키워드

참고문헌

  1. 이 민효, 토양.지하수 오염, 도서출판 동화기술, pp. 25. (2003).
  2. 박 종안, 손 부순, 장 봉기, 문 정숙, 양 원호, 김재근, 이 원식, 환경보건학개론 (2판), 도서출판 동화기술, pp. 130 (2002).
  3. Saglam, A., Bektas, S., Patir, S., Genc, O . and Denizli, A., "Novel metal complexing ligand: thiazolidine carring poly(hydroxymethacrylate) microbeads for removing of cadmium(II) and lead(II) ions from aqueous solutions", React. Funct. Polym, 47, pp. 185-192. (2001). https://doi.org/10.1016/S1381-5148(01)00026-8
  4. 정익재, 폐금속관산 광미의 중금속 불용화, 서강대학교 대학원 화학공학과 박사논문, 2001.
  5. Steele, M. C. and Pichtel, J., "Ex-situ remediation of metal-contaminated superfund soil using selective extractants", J. Environ. Engineering, 7, pp. 639-645. (1998).
  6. Yang, Z., Zhang, S., Liao, Y., Li, Q., Wu, B. and Wu, R., "Remediation of heavy metal contamination in calcareous soil by washing with reagents : A column washing", Procedia. Environ. Sci, 16, pp. 778-785 (2012). https://doi.org/10.1016/j.proenv.2012.10.106
  7. Begum, Z. A., Rahman, I. M., Tate, Y., Sawai, H., Maki, T. and Hasegawa, H., "Remediation of toxic metal contaminated soil by washing with biodegradable aminopolycarboxyalte chelants", Chemosphere, 87, pp. 1161-1170.(2012). https://doi.org/10.1016/j.chemosphere.2012.02.032
  8. Minocha, A. K., Jain, N. and Verma, C. L., "Effect of organic materials on the solidification of heavy metal sludge", Construction and Building Materials, 17(2), pp. 77-81. (2003). https://doi.org/10.1016/S0950-0618(02)00098-3
  9. Zhang, J., Liu, J., Li, C., Jin, Y., Nie, Y. and Li, J., "Comparison of the fixation effects of heavy metals by cement rotary kiln co-processing and cement base solidification/stabilization", J. Hazard. Mater, 165(1-3), pp. 1179-1185. (2009). https://doi.org/10.1016/j.jhazmat.2008.10.109
  10. Manca, P. P., Desogus, P., Orru, G. and Zucca, A., "Stabilization-solidification treatment of mine tailings using Portland cement, potassium dihydrogen phosphate and ferric chloride hexahydrates", Minerals Engineering, 45, pp.47-54. (2013). https://doi.org/10.1016/j.mineng.2013.01.003
  11. Catalan, L. J. J., Zhang, L., Larsen, A. C. and Kinrade, S. D., "Effects of sucrose and sorbitol on cement-based stabilization/solidification of toxic metal waste", J. Hazard. Mater, 151, pp. 490-498. (2008). https://doi.org/10.1016/j.jhazmat.2007.06.022
  12. Bipp, H. P., Wunsch, P., Fischer, K., Bieniek, D. and Kettrup, A., "Heavy metal leaching of fly ash from waste incineration with gluconic acid and a molasses hydrolysate", Chemosphere, 36(11), pp. 2523-2533. (1998). https://doi.org/10.1016/S0045-6535(97)10207-7
  13. Inoue, K., Kai, H., Harada, H., Kawakita, H. and Ohto, K., "Leaching behavior of heavy metals with hydrochloric acid from fly ash generated in municipal waste incineration plants", Trans. Nonferrous Met. Soc. China, 21, pp. 1422-1427. (2011). https://doi.org/10.1016/S1003-6326(11)60876-5
  14. Xie, F., Li, C., Ma, Y., Cai, T., Li, H., Huang, Z. and Yuan, G., "Multiple heavy metals extraction and recovery from hazardous electroplating sludge waste via ultrasonically enhanced two-stage acid leaching", J. Hazard. Mater, 178, pp. 823-833. (2010). https://doi.org/10.1016/j.jhazmat.2010.02.013
  15. Kuhlman, M. I., Greenfield, T. M., "Simplified soil washing processes for a variety of soils", J. Hazard. Mater, 66(1-2), pp. 31-45. (1999). https://doi.org/10.1016/S0304-3894(98)00212-X
  16. Zhang, W., Huang, Hao., Tan, Fenfang., Wang, Hong. and Qiu, R., "Influence of EDTA washing on the species and mobility of heavy metals residual in soils", J. Hazard. Mater, 173(1-3), pp. 369-376. (2010). https://doi.org/10.1016/j.jhazmat.2009.08.087
  17. Peters, R. W. "Chelant extraction of heavy metals from contaminated soils", J. Hazard. Mater, 66, pp. 151-210. (1999). https://doi.org/10.1016/S0304-3894(99)00010-2
  18. Pociecha, M. and Lestan, D. "Using electrocoagulation for metal and chelant separation from washing solution after EDTA leaching of Pb, Zn and Cd contaminated soil", J. Hazard. Mater, 174(1-3), pp. 670-678. (2010). https://doi.org/10.1016/j.jhazmat.2009.09.103
  19. Seggiani, M., Vitolo, S. and D'Antone, S. "Recovery of nickel from Orimulsion fly ash by iminodiacetic acid chelating resin", Hydrometallurgy, 81, pp. 9-14. (2006). https://doi.org/10.1016/j.hydromet.2005.09.005
  20. Rampley, C. G. and Ogden, K. L. "Preliminary studies for removal of lead from surrogate and real soils using a water soluble chelator: Adsorption and batch extraction", Environ. Sci. Technol., 32, pp. 987-993. (1998). https://doi.org/10.1021/es9706256
  21. Gusiatin, Z. M. and Klimiuk, E. "Metal (Cu, Cd and Zn) removal and stabilization during multiple soil washing by saponin", Chemosphere, 86, pp. 383-391. (2012). https://doi.org/10.1016/j.chemosphere.2011.10.027
  22. Jeon, C. and Kwon, T. N. "Selective adsorption for indium(III) from industrial wastewater using chemically modified sawdust", Korean J. Chem. Eng, 29(12), pp. 1730-1734. (2012). https://doi.org/10.1007/s11814-012-0069-1
  23. Takada, T. and Kiyama, M. "Preparation of ferrites by wet method. In: Ferrite : Proceedings of the international conference", Japan, S. pp. 69-71.(1972).
  24. Hencl, V. and Mucha, P. "The application of high-gradient magnetic separation to water treatment by means of chemically precipitated magnetite", Magn. Electr Separ., 5, pp. 155-167. (1994). https://doi.org/10.1155/1994/29474
  25. Navarro, R. R., Wada, S. and Tatsumi, K. "Heavy metal precipitation by polycation-polyanion complex of PEI and its phosphonomethylated derivative", J. Hazard. Mater, 123(1-3), pp. 203-209. (2005). https://doi.org/10.1016/j.jhazmat.2005.03.048
  26. Grimshaw, P., Calo, J. M. and Hradil, G. "Cyclic electrowinning/precipitation (CEP) system for the removal of heavy metal mixtures from aqueous solutions", Chem. Eng. J., 175, pp. 103-109. (2011). https://doi.org/10.1016/j.cej.2011.09.062
  27. Boto., B. A. and Pawlowski, L. Wastewater treatment by ion-exchange, E. & F. N. SPON, New York, pp. pp.24-37. (1987).
  28. Pongjianyakul, T., Khunawattanakul, W. and Satti, P. "Physicochemical characterizations and release studies of nicotine-magnesium aluminum silicate complexes", Appl. Clay Sci., 44(3-4), pp.242-250. (2009). https://doi.org/10.1016/j.clay.2009.03.004
  29. Oliveira, A. M., Carlos, A. D. S., "A proposed mechanism for nitrate and thiocyanate elution of strong-base ion exchange resins loaded with copper and gold cyanocomplexes", React. Funct. Polym., 68(1), pp. 141-152. (2008). https://doi.org/10.1016/j.reactfunctpolym.2007.10.002
  30. Meral, Y. and Ayhan, S. "Adsorption and desorption behavior of silver ions onto valonia tannin resin", Trans. Nonferrous Met. Soc. China, 22(11), pp. 2846-2854. (2012). https://doi.org/10.1016/S1003-6326(11)61541-0
  31. Kacan, E. and Kutahyali, C. "Adsorption of strontium from aqueous solution using activated carbon produced from textile sewage sludges", J. Anal. Appl. Pyrol., 97, pp. 149-157. (2012). https://doi.org/10.1016/j.jaap.2012.06.006
  32. Kazimierz, E. and Wisniewski, R. W. "Descripition of water vapor adsorption on various cationic forms of zeolite Y", Zeolites, 12(1), pp. 37-41, (1992). https://doi.org/10.1016/0144-2449(92)90007-C
  33. Ok, Y. S., Yang, J. E., Zhang, Y. S., Kim, S. J. and Chung, D. Y. "Heavy metal adsorption by a formulated zeolite- Portland cement mixture", J. Hazard. Mater, 147(1-2), pp. 91-96. (2007). https://doi.org/10.1016/j.jhazmat.2006.12.046
  34. Ji, F., Li, C., Tang, B., Xu, J., Lu, G. and Liu, P. "Preparation of cellulose acetate/zeolite composite fiber and its adsorption behavior for heavy metal ions in aqueous solution", Chem. Eng. J., 209, pp. 325-333. (2012). https://doi.org/10.1016/j.cej.2012.08.014
  35. Anirudhan, T. S., Bringle, C. D. and Radhakrishnan, P. G. "heavy metal interaction with phosphatic clay : Kinetic and equilibrium studies", Chem. Eng. J., 200-202, pp. 149-157. (2012). https://doi.org/10.1016/j.cej.2012.06.024
  36. Gent, D. B., Bricka, R. M., Alshawabkeh, A. N., Larson, S. L., Fabian, G. and Granade, S. " Bench-and field-scale evaluation of chromium and cadmium extraction by electrokinetics", J. Hazard. Mater, 110(1-3), pp. 53-62. (2004). https://doi.org/10.1016/j.jhazmat.2004.02.036
  37. Maturi, K. and Reddy, K. R. "Simultaneous removal of organic compounds and heavy metals from soils by electrokinetic remediation with a modified cyclodextrin", Chemosphere, 63(6), pp. 1022-1031. (2006). https://doi.org/10.1016/j.chemosphere.2005.08.037
  38. Ali, H., Khan, E. and Sajad, M. A. "Phytoremediation of heavy metals- Cocepts and applications", Chemosphere, 91(7), pp. 869-881. (2013). https://doi.org/10.1016/j.chemosphere.2013.01.075
  39. Sakakibara, M., Ohmori, Y., Ha, N. T. H., Sano, S. and Sera, K. "Phytoremediation of heavy metal contaminated water and sediment by Eleocharis acicularis", Soil. Air. Water., 39, pp. 735-741. (2011). https://doi.org/10.1002/clen.201000488
  40. Zhang, S., Chen, M., Li, T., Xu, X. and Deng, L. "A newly found cadmium accumulator- Malva sinensis Cavan", J. Hazard. Mater, 173, pp. 705-709.(2010). https://doi.org/10.1016/j.jhazmat.2009.08.142