DOI QR코드

DOI QR Code

Effect of Slurry Composting Bio-filtration (SCB) by Subsurface Drip Fertigation on Cucumber (Cucumis sativus L.) Yield and Soil Nitrogen Distribution in Greenhouse

  • Lim, Tae-Jun (Horticultural & Herbal Crop Environment Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Park, Jin-Myeon (Horticultural & Herbal Crop Environment Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Noh, Jae-Seung (Horticultural & Herbal Crop Environment Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Lee, Seong-Eun (Horticultural & Herbal Crop Environment Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Kim, Ki-In (Department of Soil, Water, and Climate, University of Minnesota)
  • 투고 : 2013.07.12
  • 심사 : 2013.08.01
  • 발행 : 2013.08.30

초록

지중관비를 이용한 시설오이 재배에서 돈분 액비의 공급이 오이의 생육, 수량 및 토양 중 질소 분포에 미치는 영향을 평가하고자 오이 반촉성 및 억제작형에 걸쳐서 수행하였다. 초장과 마디수 등 오이의 생육은 정식 후 50일에서는 처리간의 차이는 보이지 않았지만 정식 후 85일에서는 무시비의 초장 및 마디수가 각각 388.8 cm와 40.1 ea $plant^{-1}$를 보여 생육량의 차이를 나타내었다. 오이의 수량에서도 무시비를 제외하고 액비 1.0N 및 액비 0.5N + 요소 0.5N처리와 요소 1.0N간에는 통계적으로 차이가 없이 동일하였다. 오이 재배기간에 토양 중 질산태질소의 분포는 관비의 영향으로 지중 15~30 cm 깊이에서 무시비구를 제외하고 질산태 질소의 농도가 가장 높았으며 오이 재배가 끝난 작기 후에는 0~15 cm 깊이에서 가장 높은 질소 양분량을 나타내었다. 액비 1.0N과 액비 0.5N + 요소 0.5N의 질소이용효율은 촉성작형에서 0.34와 0.37를 억제작형에서는 0.29와 0.26를 각각 보여 요소 1.0N의 0.32와 0.21과 비교하여 약간 높은 값을 나타내었다. 액비 1.0N과 액비 0.5N + 요소 0.5N는 요소 1.0N과 동일한 수량을 만족하지만 2기작에 걸친 액비 1.0N 처리는 칼륨이 176 kg $ha^{-1}$이 추가적으로 토양에 공급되므로 장기간에 걸친 액비의 시용 시에는 칼륨이 과잉으로 집적될 수 있다. 따라서 지중관비를 이용한 시설오이 재배에서 질소 추천량에 대해서 반량은 액비로 공급하고 나머지 반량에 있어서는 화학비료로 시비하는 방법이 추천된다.

The use of subsurface drip fertigation using slurry composting bio-filtration (SCB) as nitrogen (N) fertilizer source can be beneficial to improve fertilizer management decision. The objective of this study was to evaluate effects of SCB liquid fertilizer by subsurface drip fertigation on cucumber (Cucumis sativus L.) yield and soil nitrogen (N) distribution under greenhouse condition. Cucumber in greenhouse was transplanted on April $4^{th}$ and Aug $31^{st}$ in 2012. N sources were SCB and urea. Four N treatments with 3 replications consisted of control (No N fertilizer), SCB 0.5N + Urea 0.5N (50:50 split application), SCB 1.0N, Urea 1.0N. 100% of N recommendation rate from soil testing was denoted as 1.0N. The subsurface drip line and a tensiometer were installed at 30 cm soil depth. An irrigation was automatically started when the tensiometer reading was -15 kPa. The growth of cucumber at 85 days after transplanting was 5% higher in all N treatment than control. Semi-forcing culture produced more fruit yield than retarding culture. Fruit yields were 62.2, 76.3, 76.4, and 75.1 Mg $ha^{-1}$ for control, SCB 1.0N, Urea 1.0N, and SCB 0.5N + Urea 0.5N, respectively. Although fruit yields were similar under SCB 1.0N, Urea 1.0N, and SCB 0.5N + Urea 0.5N, 176 kg K $ha^{-1}$ can be over applied if cucumber is grown twice a year under SCB 1.0N that may result in K accumulation in soil. N uptake was 172, 209, 213, 207 kg $ha^{-1}$ for control, SCB 1.0N, Urea 1.0N, and SCB 0.5N + Urea 0.5N, respectively. N use efficiency was the highest (37%) at SCB 0.5N + Urea 0.5N under semi-forcing culture. Nitrate-N concentration in soil for all N treatments except control in semi-forcing culture was the highest between 15 and 30 cm soil depth at the 85 days after transplanting and between 0 and 15 cm soil depth after cucumber harvest. These results suggested that SCB 0.5N + Urea 0.5N can be used as an alternative N management for cucumber production in greenhouse if K accumulation is concerned.

키워드

참고문헌

  1. Ayars, J.E., C.J. Phene, R.B. Hutmacher, K.R. Davis, R.A. Schoneman, S.S. Vail, and R.M. Mead. 1999. Subsurface drip irrigation of row crops: a review of 15 years of research at the Water Management Research Laboratory. Agric. water management. 42:1-27. https://doi.org/10.1016/S0378-3774(99)00025-6
  2. Blass, S. 1971. Drip irrigation. In: Drip (trickle) and automated irrigation in Israel. Water Commissioners Office, Ministry of Agriculture, Tel Aviv, Israel. 1: 10-28.
  3. Bucks, D.A., L.J. Erie, O.F. French, F.S. Nakayama, and W.D. Pew. 1981. Subsurface trickle irrigation management with multiple cropping. Trans ASAE. 24:1482-1489. https://doi.org/10.13031/2013.34478
  4. Camp, C.R. 1998. Subsurface drip irrigation: a review. Trans. ASAE. 41(5): 1353-1367. https://doi.org/10.13031/2013.17309
  5. Camp, C.R., P.J. Bauer, and P.G. Hunt. 1997. Subsurface drip irrigation lateral spacing and management for cotton in the southeastern coastal plain. Trans. ASAE. 40(4):993-999. https://doi.org/10.13031/2013.21351
  6. Dogan, E., H. Kirnak, K. Berekatoglu, L. Bilgel, and A. Surucu. 2008. Water stress imposed on muskmelon (Cucumis Melo L.) with subsurface and surface drip irrigation systems under semi-arid climatic conditions. Irrig. Sci. 26:131-138. https://doi.org/10.1007/s00271-007-0079-7
  7. Flores, P., I. Castellar, P. Hellín, J. Fenoll, and J. Navarro. 2007. Response of pepper plants to different rates of mineral fertilizers after soil biofumigation and solarization. J. Plant Nutr. 30:367-379. https://doi.org/10.1080/01904160601171264
  8. Gericke, S. and B. Kurmies. 1952. Die kolorimetrische phosphorsaurebestimmung mit ammonium-vandat-molybdat und ihre anwendung bei der pflanzenanalyse. Z. Pflanzenernahrung, Dungung und Bodenkunde. 59, 235-247.
  9. Jasso-Chaverria, C., G.J. Hochmuth, R.C. Hochmuth, and S.A. Sargent. 2005. Fruit yield, size, and color responses of two greenhouse cucumber types to nitrogen fertilization in perlite soilless cultures. HortTechnology. 15:565-571.
  10. Kong, Q., G. Li., Y. Wang, and H. Huo. 2012. Bell pepper response to surface and subsurface drip irrigation under different fertigation levels. Irrig. Sci. 30, 233-245. https://doi.org/10.1007/s00271-011-0278-0
  11. Lancaster, J.D. 1970. Determination of phosphorus and potassium in soils. Miss. Agr. Exp. Sta. Mimeo.
  12. Lee, C.S., K.Y. Shin, J.T. Lee, and G.J. Lee. 2003. Determination of nitrogen application level for Chinese cabbage with application of poultry manure compost in highland. Korean J. Soil Sci. Fert. 36(5):280-289.
  13. Lim, T.J., S.D. Hong, S.H. Kim, and J.M. Park. 2008. Evaluation of yield and quality from red pepper for application rates of pig slurry composting biofiltration. Korean. J. Environ. Agric. 27(2):171-177. https://doi.org/10.5338/KJEA.2008.27.2.171
  14. Lim, T.J., S.D. Hong, S.B. Kang, and J.M. Park. 2009. Evaluation of the preplant optimum application rates of pig slurry composting biofiltration for Chinese cabbage. Kor. J. Hort. Sci. Technol. 27(4):572-577.
  15. Lim, T.J., I.B. Lee, S.B. Kang, J.M. Park and S.D. Hong. 2010. Effects of fertigation with pig slurry on growth and yield of red pepper. Korean J. Environ. Agric. 29:227-231. https://doi.org/10.5338/KJEA.2010.29.3.227
  16. Martinez Hernandez, J.J., B. Bar-Yosef, and U. Kafkafi. 1991. Effect of surface and subsurface drip fertigation on sweet corn rooting, uptake, dry matter production and yield. Irrig. Sci. 12:153-159.
  17. MIFAFF. 2011. Greenhouse status and production performance of vegetables in 2010. p. 59-73. Ministry for Food, Agriculture, Forestry and Fisheries. Seoul, Korea.
  18. Mulvaney, R.L. 1996. Nitrogen inorganic forms. Methods of soil analysis. Part 3. SSSA Book Series No 5. SSSA, Madison, WI.
  19. Nelson, D.W. and L.E. Sommers. 1996. Total carbon, organic carbon and organic matter. p. 961-1010. In D.L. Sparks (ed) Methods of soil analysis. Part 3. SSSA Book Series No5. SSSA and ASA. Madison, WI.
  20. NIAST. 2000. Method of soil and plant analysis. National Institute of Agricultural Science and Technology. Rural Development Administration, Suwon, Korea.
  21. NIAST. 2006. Fertilizer recommendation for crops, National Institute of Agricultural Science and Technology. Rural Development Administration, Suwon, Korea.
  22. Park, J.M., T.J. Lim, S.E. Lee, and I.B. Lee. 2010. Effect of pig slurry fertigation on soil chemical properties and growth and development of tomato (Lycopersicon esculentum Mill.). Korean J. Soil Sci. Fert. 43:610-615.
  23. Park, J.M., T.J. Lim, S.E. Lee, and I.B. Lee. 2011. Effect of pig slurry fertigation on soil chemical properties and growth and development of cucumber (Cucumis sativus L.). Korean J. Soil Sci. Fert. 44:194-199. https://doi.org/10.7745/KJSSF.2011.44.2.194
  24. Park, J.M., T.J. Lim, and S.E. Lee. 2012. Effect of subsurface drip pipes spacing on the yield of lettuce, irrigation efficiency, and soil chemical properties in greenhouse cultivation. Korean J. Soil Sci. Fert. 45:683-589. https://doi.org/10.7745/KJSSF.2012.45.5.683
  25. Paschold, J. S., B.J. Wienhold, D.L. McCallister, and R.B. Ferguson. 2008. Crop nitrogen and phosphorus utilization following application of slurry from swine fed traditional or low phytate corn diets. Agron. J. 100:997-1004. https://doi.org/10.2134/agronj2007.0248
  26. Phene, C.J., K.R. Davis, R.B. Hutmacher, B. Bar-Yosef, D.W. Meek, and J. Misaki. 1991. Effect of high frequency surface and surface drip irrigation on root distribution of sweet corn. Irrig. Sci. 12:135-140.
  27. RDA (Rural Development Administration), 2012. Quality management and recycling of livestock manure and slurry, RDA, Suwon, Korea. pp. 10-16.
  28. Wang, Z., Z. Liu, Z, Zhang, and X. Liu. 2009. Subsurface drip irrigation scheduling for cucumber (Cucumis sativus L.) grown in solar greenhouse based on 20 cm standard pan evaporation. Sci. Horti. 123:51-57. https://doi.org/10.1016/j.scienta.2009.07.020
  29. Zhuge, Y.P., X.D. Zhang, Y.L. Zhang, L.I. Jun, L.J. Yang, Y. Huang, and M.D. Liu. 2004. Tomato root response to subsurface drip irrigation. Pedosphere. 14: 205-212.

피인용 문헌

  1. Effect of Slurry Composting and Bio-filtration (SCB) by Fertigation on Soil Chemical Properties and Growth of Red Pepper (Capsicum annuum L.) vol.48, pp.5, 2015, https://doi.org/10.7745/KJSSF.2015.48.5.404
  2. Comparison of Physico-Chemical Properties of Organic Liquid Fertilizer Containing Fish Meal According to Manufacture Method vol.24, pp.3, 2016, https://doi.org/10.17137/korrae.2016.24.3.91