DOI QR코드

DOI QR Code

Effects of pH and aeration rates on removal of organic matter and nutrients using mixotrophic microalgae

Mixotrophic 미세조류를 이용한 유기물 및 영양염류 제거에 미치는 pH 및 폭기의 영향

  • Kim, Sunjin (Department of Environmental Science and Engineering, Center for Environmental Studies, Kyung Hee University) ;
  • Lee, Yunhee (Department of Environmental Science and Engineering, Center for Environmental Studies, Kyung Hee University) ;
  • Hwang, Sun-Jin (Department of Environmental Science and Engineering, Center for Environmental Studies, Kyung Hee University)
  • 김선진 (경희대학교 공과대학 환경공학과.환경연구센터) ;
  • 이윤희 (경희대학교 공과대학 환경공학과.환경연구센터) ;
  • 황선진 (경희대학교 공과대학 환경공학과.환경연구센터)
  • Received : 2012.12.18
  • Accepted : 2013.02.08
  • Published : 2013.02.15

Abstract

Specific growth rate and removal rate of nitrogen and phosphorus of Chlorella sorokiniana, Chlorella vulgaris, Senedesmus dimorphus those are able to metabolite mixotrophically and have high nitrogen and phosphorus removal capacity were examined. Based on the results, one microalgae was selected and conducted experiments to identify the operating factors such as pH and aeration rate. The specific growth rate and phosphorus removal rate of C. sorokiniana significantly presented as $0.29day^{-1}$ and 1.65 mg-P/L/day, while the nitrogen removal rate was high as 12.7 mg-N/L with C. vulgaris. C. sorokiniana was chosen for appropriate microalgae to applying for wastewater treatment system and was cultured in pH ranged 3 to 11. High specific growth rate and removal rate of nitrogen and phosphorus were shown at pH 7 as $0.71day^{-1}$, 7.61 mg-N/L/day, and 1.24 mg-P/L/day, respectively. The specific growth rate examined with aeration rate between 0 and 2 vvm (vol/vol-min) highly presented as $1.2day^{-1}$ with 1.5 ~ 2 vvm, while the nitrogen removal rate was elevated with 0.5 vvm as 9.43 mg-N/L/day.

Keywords

References

  1. Aaronson, S. and Dubinsky, Z. (1982) Mass production of microalgae, Cell. Mol. Life Sci,. 38, pp.36-40 https://doi.org/10.1007/BF01944523
  2. Abreu, A. P., Fernandes. B., Vicente, A. A., Teixeira, J., Dragone, G. (2012) Mixotrophic cultivation of Chlorella vulgaris using industrial diary waste as organic carbon source, Bioresource Technology, 118, pp.61-66 https://doi.org/10.1016/j.biortech.2012.05.055
  3. Andrade, M. R., Costa J. A. V. (2007) Mixotrophic cultivation of microalga Spirulina platensis using molasses as organic substrate, Aquaculture, 264, pp.130-134 https://doi.org/10.1016/j.aquaculture.2006.11.021
  4. Chen, F., Zhang, Y. (1997) High cell density mixotrophic culture of Spirulina platensis on glucose for phycocyanin production using a fed-batch system, Enzyme and Microbial Technology, 20, pp.221-224 https://doi.org/10.1016/S0141-0229(96)00116-0
  5. Chisti, Y. (2007) Biodiesel from microalgae, Biotechnology Advances, 25(3), pp. 294-306 https://doi.org/10.1016/j.biotechadv.2007.02.001
  6. Chojnacka K., Marquez-Rocha F. (2004) Kinetic and stoichiometric relationships of the energy and carbon metabolism in the culture of microalgae, Biotechnology, 3, pp.21-34 https://doi.org/10.3923/biotech.2004.21.34
  7. de-Bashan, L. E., Moreno, M., Hernandez, J. P., Bashan, Y. (2002) Removal of ammonium and phosphorus ions from synthetic wastewater by the microalgae Chlorella vulgaris coimmobilized in alginate beads with the microalgae growth-promoting bacterium Azospirillum brasilense, Water Research, 36, pp.2941-2948 https://doi.org/10.1016/S0043-1354(01)00522-X
  8. de-Bashan, L. E., Trejo, A., Huss, V. A. R., Hernandez, J. P., Bashan, Y. (2008) Chlorella sorokiniana UTEX 2805, a heat and intense, sunlight-tolerant microalga with potential for removing ammonium from wastewater, Bioresource Technology, 99, pp.4980-4989 https://doi.org/10.1016/j.biortech.2007.09.065
  9. Endo, H., Hosoya, H., Koibuchi, T. (1977) Growth yields of Chlorella regularis in dark-heterotrophic continuous cultures using acetate, J. Ferment. Techol., 55, pp.369-370
  10. Fiero, S., Sanchez-Saavedr, M. P., Copalcua, C. (2008) Nitrate and phosphate removal by chitosan immobilized Scenedemus, Bioresorce Technology, 99, pp.1274-1279 https://doi.org/10.1016/j.biortech.2007.02.043
  11. Kang, S. O., Kim, B. H., Shin, S. Y., Oh, H. M., Kim, H. S. (2012) Municipal wastewater treatment and microbial diversity analysis of microalgal mini raceway open pond, Korean Journal of Microbiology, 48(3), pp.192-199. https://doi.org/10.7845/kjm.2012.036
  12. Kim, J. S., Lingaraju, B. P., Rheaume, R., Lee, J. Y., Siddiqui, K. F. (2010) Removal of ammonia from wastewater effluent by Chlorella vulgaris, Tsinghua Science and Technology, 15(4), pp.391-396 https://doi.org/10.1016/S1007-0214(10)70078-X
  13. Kwon, S. H., Lee, E. M., Cho, D. C. (2012) Optimal culturing and enhancement of lipid accumulation in a microalga Botryococcus braunii, Journal of Korean Environmental Sciences, 21(7), pp.779-785 https://doi.org/10.5322/JES.2012.21.7.779
  14. Larsdotter, K., La Courjansen, J., Dalhammar, G. (2007) Biologically mediated phosphorus precipitation in wastewater treatment with microalgae, Environmental Technology, 28, pp.953-960 https://doi.org/10.1080/09593332808618855
  15. Maruyama, I., Ando, Y., Maeda, T., Hirayama, K. (1989) Uptake of vitamin B12 by various strains of unicellular algae Chlorella. Nippin Suisan Gakkaishi, 55, pp.1785-1790 https://doi.org/10.2331/suisan.55.1785
  16. Mata, T. M., Martins, A. A., Caetano, N. S. (2010) Microalgae for biodiesel production and other applications: A review, Renewable & Sustainable Energy Reviews, 14(1), pp.217-232 https://doi.org/10.1016/j.rser.2009.07.020
  17. Park, H. J., Jin, E. J., Jung, T. M., Joo, H., Lee, J. H. (2010) Optimal culture conditions for photosynthetic microalgae Nannochloropsis oculata, Appl. Chem. Eng., 21(6), pp.659-663
  18. Rossler, P.G. (1990) Environmental control of glycerolipid metabolism in microalgae: Commercial implications and future research directions, J. Phycol., 26, pp.393-399 https://doi.org/10.1111/j.0022-3646.1990.00393.x
  19. Semerjian, L., Ayoub, G. M. (2003) High-pHmagnesium coagulation-flocculation in wastewater treatment, Advances in Environmental Research, 7, pp.389-403 https://doi.org/10.1016/S1093-0191(02)00009-6
  20. Wang, H., Xiong, H., Hui, Z., Zeng, X. (2012) Mixotrophic cultivation of Chlorella pyrenoidosa with diluted primary piggery wastewater to produce lipids, Bioresource Technology, 104, pp.215-220 https://doi.org/10.1016/j.biortech.2011.11.020

Cited by

  1. 미세조류를 이용한 오·폐수 영양염류 제거효율 평가 vol.50, pp.2, 2013, https://doi.org/10.11614/ksl.2017.50.2.187
  2. Ankistrodesmus bibraianus의 최적 배양조건 설정을 통한 수질오염물질 제거 및 축산 폐수 처리 적용 vol.38, pp.1, 2020, https://doi.org/10.11626/kjeb.2020.38.1.082