DOI QR코드

DOI QR Code

3차원 전기비저항 모니터링 자료의 시간경과 역산

Time-lapse Inversion of 3D Resistivity Monitoring Data

  • 김연정 (강원대학교 지구물리학과) ;
  • 조인기 (강원대학교 지구물리학과) ;
  • 용환호 (한국농어촌공사 농어촌기술연구소) ;
  • 송성호 (한국농어촌공사 농어촌기술연구소)
  • Kim, Yeon-Jung (Department of Geophysics, Kangwon National University) ;
  • Cho, In-Ky (Department of Geophysics, Kangwon National University) ;
  • Yong, Hwan-Ho (Rural Research Institute, Korea Rural Community Corporation) ;
  • Song, Sung-Ho (Rural Research Institute, Korea Rural Community Corporation)
  • 투고 : 2013.02.12
  • 심사 : 2013.10.29
  • 발행 : 2013.11.30

초록

모델변수의 증감 및 분해능을 고려하는 새로운 교차모델 제한자를 사용한 시간경과 역산 알고리듬을 개발하였다. 증감을 고려한 교차모델 제한자는 같은 변화비를 갖는 모델변수에 같은 제한을 가한다. 이 교차모델 제한자는 모델변수의 증감에 관계없이 의미 있는 변화를 보이는 모델변수들을 강조할 수 있다. 분해능 교차모델 제한자는 분해능이 낮은 모델변수에 작은 제한을 가하는 반면, 분해능이 높은 모델변수에는 큰 제한을 가한다. 따라서 분해능이 낮은 모델변수도 시간 경과에 따라 의미 있는 변화를 보일 경우 효과적으로 식별할 수 있다. 3차원 전기비저항 모니터링 자료의 수치실험을 통하여 이들 두 교차모델 제한자의 타당성을 검증하였다. 최종적으로, 방조제의 안정성 평가를 위하여 서해안에 위치한 방조제에서 얻은 3 차원 전기비저항 모니터링 자료의 처리에 개발된 시간경과 역산법을 적용하였다. 시간경과 역산의 결과 모니터링이 수행된 기간 동안 방조제에 주목할 만한 변화가 없는 것으로 해석되었다.

We developed a time-lapse inversion using new cross-model constraints based on change ratio and resolution of model parameters. The cross-model constraint based on change ratio imposes the same penalty on the model parameters with equal change ratio. This constraint can emphasize the model parameters with significant change regardless of their increase or decrease. The resolution cross-model constraint imposes a small penalty on the model parameters with poor resolution, but a large penalty on the model parameters with good resolution. Thus, the model parameter with poor resolution can be effectively identified in the inversion result if they are significantly changed with time. Through the numerical tests for 3D resistivity monitoring data sets, the performance of these two cross-model constraints was confirmed. Finally, for the safety estimation of a sea dyke, we applied the developed time-lapse inversion to the 3D resistivity monitoring data that were acquired at a sea dike located in western coastal area of Korea. The result of time-lapse inversion suggested that there were no significant changes at the sea dike during the monitoring period.

키워드

참고문헌

  1. Ahn, H. Y., Jeong, J. H., Cho, I. K., Kim, J. H., and Bae, G. J., 2008, Application of resistivity monitoring with tunnel excavation area, Tunneling Technology, 10(4), 405-420.
  2. Cassiani, G., Bruno, V., Villa, A., Fusi, N., and Binley, A. A., 2006, A saline trace test monitored via time-lapse surface electrical resistivity tomography, Journal of Applied Geophysics, 59, 244-259. https://doi.org/10.1016/j.jappgeo.2005.10.007
  3. Cho, I. K., Kang, H. J., and Kim, K. J., 2006, Distortion of resistivity data due to the 3D geometry of embankment dams, Geophysics and Geophysical Exploration, 9(4), 291-298.
  4. Cho, I. K., Lee, K. S., and Kang, H. J., 2010, 3D Effect of embankment dam geometry to resistivity data, Geophysics and Geophysical Exploration, 13(4), 397-406.
  5. Chung, S. H., Kim, J. H., Yang, J. M., Han, K. E., and Kim, Y. W., 1992, Delineation of water seepage in earth-fill embankments by electrical resistivity method, The Journal of Engineering Geology, 2(1), 47-58.
  6. Daily, W., A. Ramirez, A. Binley, and D. LeBrecque. 2004, Electrical resistance tomography, Leading Edge, 23, 438-442. https://doi.org/10.1190/1.1729225
  7. Day-Lewis, F. D., Singha, K., and Binley, A. M., 2005, Applying petrophysical models to radar travel time and electrical resistivity tomograms: resolution-dependent limitations, Journal of Geophysical Research, 110, B08206, doi:10.1029/2004JB003569.
  8. Kemna, A., Vanderborght, J., Kulessa, B., and Vereecken, H., 2002, Imaging and characterization of subsurface solute transport using electrical resistivity tomography (ERT) and equivalent transport models, Journal of Hydrology, 267, 125-146. https://doi.org/10.1016/S0022-1694(02)00145-2
  9. Kim, K. J., and Cho, I. K., 2011, Time-lapse inversion of 2D resistivity monitoring data with a spatially varying crossmodel constraint, Journal of Applied Geophysics, 74, 114-122. https://doi.org/10.1016/j.jappgeo.2011.04.010
  10. Kim, K. J., Cho, I. K., and Jeong, J. H., 2008, Time-lapse inversion of 2-D resistivity monitoring data, Geophysics and Geophysical Exploration, 11(4), 326-334.
  11. LaBrecque, D. J., and Yang, X., 2001, Difference inversion of ERT data: a fast inversion method for 3-D in-situ monitoring, Journal of Environmental and Engineering Geophysics, 6, 83-89. https://doi.org/10.4133/JEEG6.2.83
  12. Slater, L. D., and Sandberg, S. K., 2000, Resistivity and induced polarization monitoring of salt transport under natural hydraulic gradients, Geophysics, 65(2), 408-420. https://doi.org/10.1190/1.1444735
  13. Loke, M. H., 1999, Time-lapse resistivity imaging inversion, Proceedings of the 5th Meeting of the Environmental and Engineering European Section, Em1.
  14. Menke, M. H., 1984, Geophysical data analysis: discrete inverse theory, Academic Press Inc.
  15. Miller, C. R., Routh, P. S., Brosten, T. R., and McNamara, J. P., 2008, Application of time-lapse ERT imaging to watershed characterization, Geophysics, 73, G7-G17. https://doi.org/10.1190/1.2907156
  16. Mitchell, V., and Knight, R., 2011, Inversion of time-lapse electrical resistivity imaging data for monitoring infiltration, The Leading Edge, 30, 140-144. https://doi.org/10.1190/1.3555323
  17. Nguyen, F., and Kemna, A., 2005, Time-lapse inversion of electrical resistivity data: Fall meeting 2005, AGU, Abstract #H13C-1346.
  18. Oldenborger, G. A., Knoll, M. D., Routh, P. S., and LaBrecque, D. J., 2007, Time-lapse ERT monitoring of an injection/ withdrawal experiment in a shallow unconfined aquifer, Geophysics, 72, F177-F188. https://doi.org/10.1190/1.2734365
  19. Papadopoulos, N. G., Tsourlos, P., Tsokas, G. N., and Sarris, A., 2006, Two-dimensional and three-dimensional resistivity imaging in archaeological site investigation, Archaeological Prospection Archaeol. Prospect. 13, 163-181. https://doi.org/10.1002/arp.276
  20. Park, S. G., Kim, J. H., and Seo, G. W., 2005, Application of electrical resistivity monitoring technique to maintenance of embankments, Geophysics and Geophysical Exploration, 8(2), 177-183.
  21. Park, S. G., Song, S. H., Choi, J. H., Choi, B. G., and Lee, B. H., 2002, Applicability of geophysical prospecting for water leakage detection in water utilization facilities, Proceedings of the 4th special symposium, KSEG., 179-195.
  22. Song, S. H., Yong, H. H., An, J. G., and Kim, G. P., 2003, Application of electrical and small-loop EM survey to the identification of the leachate at a waste landfill in jeiu island, Geophysics and Geophysical Exploration, 6(3), 143-152.
  23. Yi, M. J., Kim, J. H., and Chung, S. H., 2003, Enhancing the resolving power of least-squares inversion with active constraint balancing, Geophysics, 68, 931-941. https://doi.org/10.1190/1.1581045
  24. Yi, M. J., Kim, J. H., Song, Y. H., and Chung, S. H., 2000, Dam seepage investigation using two- and three-dimensional resistivity surveys, Proceedings of the 2nd special symposium, KSEG., 41-53.

피인용 문헌

  1. The Estimation of Seepage Blocking State with the Normalized Hydraulic Head Loss Rate at Each Seepage Segment in Sea Dike Embankment vol.56, pp.6, 2014, https://doi.org/10.5389/KSAE.2014.56.6.159