DOI QR코드

DOI QR Code

가곡 스카른광상 암석의 물리적 특성

Physical Properties of Rocks at the Gagok Skarn Deposit

  • 신승욱 (한국지질자원연구원 자원탐사개발연구실) ;
  • 박삼규 (한국지질자원연구원 자원탐사개발연구실) ;
  • 김형래 (공주대학교 지질환경과학과)
  • Shin, Seungwook (Exploration Geophysics and Mining Engineering Dept., Korea Institute of Geoscience and Mineral Resources) ;
  • Park, Samgyu (Exploration Geophysics and Mining Engineering Dept., Korea Institute of Geoscience and Mineral Resources) ;
  • Kim, Hyoung-Rae (Department of Geoenvironmental Sciences, Kongju National University)
  • 투고 : 2013.05.20
  • 심사 : 2013.08.23
  • 발행 : 2013.08.31

초록

물리탐사는 금속광상에서 광화대를 탐사하는데 효율적인 방법으로 국내 외에서 전략광물자원을 개발하기 위하여 널리 이용되고 있다. 물리탐사 결과로부터 광화대를 정확하게 해석하기 위하여 암석의 물리적 특성을 이해하는 것이 매우 중요하다. 따라서 이 연구는 국내 대표적 스카른 광상인 가곡광산의 광석 및 모암을 대상으로 실내에서 다양한 물성을 측정하였으며, 그 결과로부터 가곡 스카른 광상을 구성하는 지층의 물리적 특성을 파악하고자 하였다. 암석시료는 시추코어 및 노두에서 채취하였으며, 시료의 물성은 실내 암석물성 측정시스템을 이용하여 밀도, 대자율, 전기비저항, 광대역 유도분극을 측정하였다. 그 결과 광석은 모암에 비하여 낮은 전기비저항과 높은 대자율 및 밀도를 보였으며, 광대역 유도분극에서 큰 위상과 특정한 임계주파수가 나타났다. 광석의 광대역 유도분극 측정 자료를 Cole-Cole 역산을 통하여 얻은 충전성과 시간상수로부터 황화광물의 함량과 입자의 크기를 추정할 수 있어 스카른 광상 탐사에서 유용할 것으로 기대된다.

Geophysical exploration is widely used to develop strategic mineral resources in the world because of its efficient method in detecting mineralized zones in the metallic ore deposit. It is important to understand the physical properties of the stratum so that geophysical data can be more accurately interpreted. This paper is to comprehend physical properties of the rock at the Gagok mine, a typical skarn deposit in Korea. Thus, laboratory tests were conducted on specimens of ore and host rocks which were collected from rock outcrops and drill cores at the Gagok mine. Using the measurement system of rock physical property, we investigated the density, magnetic susceptibility, resistivity, and spectral induced polarization. According to the results, all physical properties of specimens had wide differences depending on contents of ore minerals, which are formed by skarnization. Especially, using the chargeability and time constant from the calculated spectral induced polarization data by the Cole-Cole inversion, we could estimate the volume contents as well as the grain size of the sulfide minerals. Therefore, the spectral induced polarization technique may be considered a useful method when exploring metallic ore deposit with sulfide minerals.

키워드

참고문헌

  1. Archie, G. E., 1942, The electrical resistivity log as an aid in determining some reservoir characteristics, Transaction of American Institute of Mining Metallurgical and Petroleum Engineers, 146(99), 54-62.
  2. Bishop, J. R., and Emerson, D. W., 1999, Geophysical properties of zincbearing deposits, Australian Journal of Earth Sciences, 46(3), 311-328. https://doi.org/10.1046/j.1440-0952.1999.00706.x
  3. Choi, B. K., Choi, S. G., Seo, J. E., Yoo, I. K., Kang, H. S., and Koo, M. H., 2010 Mineralogical and geochemical characteristics of the Wolgok-Seongok orebodies in the Gagok skarn deposit : Their genetic implications, Journal of Economic and Environmental Geology, 43(5), 477-490.
  4. Choi, S.-G., Choi, B. K., Ahn, Y. H., and Kim, T. H., 2009, Reevaluation of genetic environments of zinc-lead deposits to predict hidden skarn orebody, Journal of Economic and Environmental Geology, 42(4), 301-314.
  5. Emerson, D. W., 1986, Physical properties of skarns, Exploration Geophysics, 17(4), 201-212. https://doi.org/10.1071/EG986201
  6. Franklin, J. A., 1979, Suggested methods for determining water content, porosity, density, absorption and related properties and swelling and slake-durability index properties. Part I, International Society for Rock Mechanics, 143-151.
  7. Hallof, P. G., 1974, The IP phase measurement and inductive coupling, Geophysics, 39(5), 650-665. https://doi.org/10.1190/1.1440455
  8. Heo, S. Y., Oh. J. H., Yang, K. H., Hwang, J. Y., and Park, S. G., 2012, The relationship between the mineral characteristics and spectral induced polarization for the core rock samples from the Gagok skarn deposit, Journal of Economic and Environmental Geology, 45(4), 351-363. https://doi.org/10.9719/EEG.2012.45.4.351
  9. Kim, Y. H., and Choi, Y. G., 1999, Experimental verification on factors affecting core resistivity measurement (II) - characteristics of time series data and determination method of resistivity, Journal of Korean Geophysical Society, 2(4), 269-279.
  10. Knight, R. J., and Nur, A., 1987, The dielectric constant of sandstones, 60 kHz to 4 MHz, Geophysics, 52(5), 644-654. https://doi.org/10.1190/1.1442332
  11. KORES, 1981, Economic mineral deposirs in Korea, 8, 184-185.
  12. Lee, S. K., and Lee, T. J., 2009, Electrical resistivity of cylindrical cement core with successive substitution by electrolyte of different conductivity, Jigu-Mulli-wa-Mulli-Tamsa, 12(4), 328-337.
  13. Madden, T. R., 1961, Electrode polarization and its influence on the electrical properties of mineralized rock, PhD thesis, MIT, 161.
  14. Papida, S., Murphy, W., and May, E., 2000, Enhancement of physical weathering of building stones by microbial populations, International biodeterioration and biodegradation, 46(4), 305-317. https://doi.org/10.1016/S0964-8305(00)00102-5
  15. Park, M. K., 2005, Laboratory study on the electrical resistivity characteristics with contents of clay minerals, Mulli-Tamsa, 8(3), 218-223.
  16. Park, S. G., 2004, Physical property factors controlling the electrical resistivity of subsurface, Mulli-Tamsam,7(2), 130-135.
  17. Patnode, H. W., and Wyllie, M. R. J., 1950, The presence of conductive solids in reservoir rocks as a factor in electric log interpretation, Journal of Petroleum Technology, 2(2), 47-52. https://doi.org/10.2118/950047-G
  18. Pelton, W. H., Ward, S. H., Hallof, P. G., Sill, W. R., and Nelson, P. H., 1978, Mineral discrimination and removal of inductive coupling with multifrequency IP, Geophysics, 43(3), 588-609. https://doi.org/10.1190/1.1440839
  19. Petersson, J., and Eliasson, T., 1997, Mineral evolution and element mobility during episyenitization (dequartzification) and albitization in the postkinematic Bohus granite, southwest Sweden, Lithos, 42(1), 123-146. https://doi.org/10.1016/S0024-4937(97)00040-6
  20. Pola, A., Crosta, G., Fusi, N., Barberini, V., and Norini, G., 2012, Infulence of alteration on physical properties of volcanic rocks, Tectonophysics, 566, 67-86.
  21. Sardini, P., Siitari-Kauppi, M., Beaufort, D., and Hellmuth, K. H., 2006, On the connected porosity of mineral aggregates in crystalline rocks, American Mineralogist, 91(7), 1,069-1,080. https://doi.org/10.2138/am.2006.1939
  22. Son, J. S., Kim, J. H., and Yi, M. J., 2007, IP Modeling and Inversion Using Complex Resistivity, Mulli-Tamsa. 10(2), 138-146.
  23. Sung, N. H., 2010, Measurement System Construction and Data Base Application of Rock Physical Properties, PhD, Chonbuk National University, Korea, 117.
  24. Yun, S., and Einaudi, M. T., 1982, Zinc-lead skarns of the Yeonhwa-Ulchin district, South Korea, Economic Geology, 77(4), 1,013-1,032. https://doi.org/10.2113/gsecongeo.77.4.1013
  25. Yun, S., and Silberman, M. L., 1979, K-Ar geochronology of igneous rocks in the Yeonhwa-Ulchin zinc-lead district and southern margin of the Taebaegsan basin. Korea, Journal of Geological Society of Korea, 15, 89-99.
  26. Wynn, J. C., and Zonge, K. L., 1975, EM coupling, its intrinsic value, its removal and the cultural coupling problem, Geophysics, 40(5), 831-850. https://doi.org/10.1190/1.1440571

피인용 문헌

  1. Application of Spectral Induced Polarization Method for Skarn Metallic Deposits Exploration vol.19, pp.4, 2016, https://doi.org/10.7582/GGE.2016.19.4.212
  2. Multiple-point geostatistical simulation for mine evaluation with aeromagnetic data vol.49, pp.6, 2018, https://doi.org/10.1071/EG17171