DOI QR코드

DOI QR Code

한국 황해 백령도 주변해역 후 제4기 퇴적작용

Late Quaternary Sedimentation in the Yellow Sea off Baegryeong Island, Korea

  • 조민희 (한국석유공사 탐사기술처) ;
  • 이은일 (국립해양조사원 해양과학조사연구실) ;
  • 유학렬 (국립해양조사원 해양관측과) ;
  • 강년건 (한국지질자원연구원 석유해저연구본부) ;
  • 유동근 (한국지질자원연구원 석유해저연구본부)
  • Cho, MinHee (Exploration Department, Korea National Oil Corporation) ;
  • Lee, Eunil (Ocean Research Division, Korea Hydrography Oceanography & Administration (KHOA)) ;
  • You, HakYoel (Ocean Observation Division, Korea Hydrography Oceanography & Administration (KHOA)) ;
  • Kang, Nyen-Gun (Petroleum and Marine Research Division, Korea Institute of Geosciences and Mineral Resources (KIGAM)) ;
  • Yoo, Dong-Geun (Petroleum and Marine Research Division, Korea Institute of Geosciences and Mineral Resources (KIGAM))
  • 투고 : 2013.05.21
  • 심사 : 2013.07.31
  • 발행 : 2013.08.31

초록

황해 백령도 주변해역에 분포하는 해저면 연계퇴적층의 음향상 연구를 위해 고해상 탄성파 탐사자료를 분석하였다. 해저지형 및 내부 음향상 특징에 의하면 연구지역에 분포하는 천부퇴적층은 총 7개의 음향상으로 구분된다. 내부 반사면이 약간 혹은 양호하게 발달하거나 내부반사면을 전혀 수반하지 않는 평탄한 해저면(음향상 1-1, 1-2)은 연구지역의 남쪽에 주로 분포한다. 파형의 표면구조를 수반하는 평탄한 해저면(음향상 1-3)은 중부해역에 발달한다. 평탄한 해저면 혹은 파형의 표면구조를 수반하는 마운드 형태의 해저면 특징(음향상 2-1, 2-2, 2-3)은 중부해역에 분포한다. 내부 반사면이 발달하지 않고 불규칙한 침식흔적을 갖는 해저면(음향상 3-1)은 조사해역의 북부해역인 백령도 외해쪽에 주로 존재한다. 음향상의 분포 및 퇴적물 특성에 의하면 연구지역의 퇴적환경은 뚜렷한 3 지역으로 구분되는 바 (1) 강한 조류의 영향으로 심한 침식작용이 진행되고 있는 북쪽지역, (2) 해수면 상승과 연계된 조류의 영향으로 형성된 사퇴가 분포하는 중부해역, (3) 박층의 해침 사질층이 분포하고 있는 남부해역 등으로 구성된다. 연구지역에 분포하는 7 음향상을 포함하는 이와 같은 퇴적층은 홀로세 해침동안 해수면 상승 및 강한 조류와 연계된 퇴적작용을 반영한다.

High-resolution chirp profiles were analyzed to investigate the echo types of near-surface sediments in the Yellow Sea off the Baegryeong Island. On the basis of seafloor morphology and subbottom echo characters, 7 echo types were identified. Flat seafloor with no internal reflectors or moderately to well-developed subbottom reflectors (echo type 1-1 and 1-2) is mainly distributed in the southern part of the study area. Flat seafloor with superposed wavy bedforms (echo type 1-3) is also distributed in the middle part. Mounded seafloor with either smooth surface or superposed bedforms (echo type 2-1, 2-2, and 2-3) occurs in the middle part of the study area. Irregular and eroded seafloor with no subbottom reflectors (echo type 3-1) is present in the northern part of the study area off the Baegryeong Island. According to the distribution pattern and sedimentary facies of echo types, depositional environments can be divided into three distinctive areas: (1) active erosional zone due to strong tidal currents in the northern part; (2) formation of tidal sand ridges in response to tidal currents associated with sea-level rise distributed in the middle part; and (3) transgressive sand sheets in the southern part. Such a depositional pattern, including 7 echo types, in this area reflects depositional process related to the sea-level rise and strong tidal currents during the Holocene transgression.

키워드

참고문헌

  1. Allen, J., 1980, Sand waves: a model of origin and internal structure, Sedimentary Geology, 26, 281-328. https://doi.org/10.1016/0037-0738(80)90022-6
  2. Belderson, R. H., Jhonson, M. A., and Kenyon, N. H., 1982, Bedform, In: Stride, A. H. (Ed.) Offshore Tidal Sands: Processes and Deposits. Chapman and Hall, NY, 27-57.
  3. Bern, S., Lericolais, G., Marsset, T., Bourillet J.-F., and De Batost, M., 1998, Erosional offshore sand ridges and lowstand shorefaces: examples from ride- and wave-dominanted environments of France, Journal of Sedimentary Reseach, 68, 540-555. https://doi.org/10.2110/jsr.68.540
  4. Bloom, A. L., and Park, Y. A., 1985, Holocene sea-level history and tectonic movements, Republic of Korea, Quat. Res. Japan 24, 77-84. https://doi.org/10.4116/jaqua.24.77
  5. Choi, B. H., 2001, Prediction of sand transport directions in the Yellow Sea, In Park, Y. A., and Davis, R. A, JR., eds., Proceedings of tidalites 2000: Korean Society of Oceanography, Special Publication, 19-24.
  6. Choi, D. L., Kim, S. R., Suk, B. C., and Han, S. J., 1992, Transport of sandy sediments in the Yellow Sea off Tae-An Peninsula, Korea, The Journal of the Korean Society of Oceanography, 27, 66-77.
  7. Chough, S. K., Jeong, K. S., and Honza, E., 1985, Zoned facies of massflow deposits in the Ulleung (Tsushima) Basin, East Sea (Sea of Japan), Marine Geology, 65, 113-125. https://doi.org/10.1016/0025-3227(85)90049-0
  8. Chough, S. K., Kim, J. W., Lee, S. H., Shinn, Y. J., Jin, J. H., Suh M. C., and Lee, J. S., 2002, High-resolution acoustic characteristics of epicontinental sea deposits, central-eastern Yellow sea, Marine Geology, 188, 317-331. https://doi.org/10.1016/S0025-3227(02)00379-1
  9. Damuth, J. E., 1975, Echo character of the western equatorial Atlantic floor and its relationship to the dispersal and distribution of terrigenous sediments. Marine Geology, 18, 17-45. https://doi.org/10.1016/0025-3227(75)90047-X
  10. Damuth, J. E., and Hayes, D. E., 1977, Echo character of the East Brazilian continental margin and its Relationship to sedimentary processes, Marine Geology, 24, 73-95. https://doi.org/10.1016/0025-3227(77)90002-0
  11. Damuth, J. E., 1978, Echo Character of the Norwegian-Greenland Sea: Relationship to Quaternary sedimentation, Marine Geology, 28, 1-36. https://doi.org/10.1016/0025-3227(78)90094-4
  12. Damuth, J. E., 1980, Use of High-frequency (3.5-12 kHz) echograms in the study of near-bottome sedimentation process in the deep-sea: a review, Marine Geology, 38, 51-75. https://doi.org/10.1016/0025-3227(80)90051-1
  13. David, T., 1987, Tides, Surges and Mean Sea-Level. John Wiley, New York. 472pp.
  14. Fairbanks, R.G., 1989, A 17,000 year glacial-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep ocean circulation, Nature, 342, 637- 642. https://doi.org/10.1038/342637a0
  15. Folk, R. L., 1954, The distribution between frain size and mineral composition in sedimentary rock nomenclature, Journal of Geology, 26, 3-32.
  16. Huh, S., Chun, J. H., Han, S. J., Shin, D. H., Yi, H. L., Kim, S. R., Choi, D. L., Lee, Y. K., Jung, B. H., and Suk, B. C., 1999, Quaternary depositional environments in the central Yellow Sea interpreted from chirp seismic data, Journal of the Korean Geophysical Society, 2(3), 191-200.
  17. Jin, J. H., and Chough, S. K., 1998, Partitioning of transgressive deposits in the southeastern Yellow sea: a sequence stratigraphic interpretation, Marine Geology, 149, 79-92. https://doi.org/10.1016/S0025-3227(98)00023-1
  18. Jin, J. H., and Chough, S. K., 2002, Erosional shelf ridges in the mid-eastern Yellow Sea, Geo Marine Letters, 21, 219-225.
  19. Kenyon, N. H., and Stride, A. H., 1970, The tide-swept continental shelf sediments between the Shetland Isles and France, Sedimentology, 14, 159-173. https://doi.org/10.1111/j.1365-3091.1970.tb00190.x
  20. Korea Hydrographic Oceanographic Administration (KHOA), 2008, The report on the basic map: Anmado area, west of Gunsan, 339pp.
  21. Korea Hydrographic Oceanographic Administration (KHOA), 2010, Study on development of tidal current energy resource map (I): Observation-derived estimate, 591pp.
  22. Korea Institute of Geoscience and Mineral Resources (KIGAM), 1996, Yellow sea drilling program for studies on Quaternary geology. KIGAM Research Report, KR-96(T)-18, 595pp.
  23. Korea Institute of Geoscience and Mineral Resources (KIGAM), 2002, Yellow Sea Science Program; Study on the Marine Geology and Mineral Resources in the Yellow sea, M1-0123- 00-0001, 74pp.
  24. Lee, H. J., and Chough, S. K., 1989, Sediment distribution, dispersal and budgt in the Yellow Sea, Marine Geology, 87, 195-205. https://doi.org/10.1016/0025-3227(89)90061-3
  25. Lee, H. J., Jeong, L. S., Han, S. J., and Bahk, K. S., 1988, Heavy minerals indicative of Holocene transgression in the southeastern Yellow Sea, Continental Shelf Research, 8, 255-266. https://doi.org/10.1016/0278-4343(88)90032-5
  26. Mitchum, R. M., Vail, P. R., and Sangree, J. B., 1977, Stratigraphic interpretation of seismic reflection patterns in depositional sequences. In: C. E. Payton, (Editor), Seismic Stratigraphy Applications to Hydrocarbon Exploration, American Association of Petroleum Geologists, Memoir 26, 117-133.
  27. Off, T., 1963, Rhythmic linear sand bodies caused by tidal currents, Bull, American Association of Petroleum Geologists, 47, 324-341.
  28. Park, B. K., and Han, S. J., 1987, Surface sediments, basin evolution, and sedimentary sequence of the Yellow Sea, Ocean Research, 9, 51-64. https://doi.org/10.1016/0141-1187(87)90031-9
  29. Park, S. C., Lee, H. H., Han, H. S., Lee, G. H., Kim D. C., and Yoo, D. G., 2000, Evolution of late Quaternary mud deposits and recent sediment budget in the southeastern Yellow Sea, Marine Geology, 170, 271-288. https://doi.org/10.1016/S0025-3227(00)00099-2
  30. Park, S. C., Lee, H. S., Yoo, D. C., and Lee, C. W., 2006, Late Quaternary stratigraphy and development of tidal sand ridges in the eastern Yellow Sea, Journal of Sedimentary Research, 76, 1093-1105. https://doi.org/10.2110/jsr.2006.092
  31. Park, Y. A., Choi, J. Y., Lee, C. B., Kim, D. C., and Choi, K. W., 1994, Sediment distributions and depositional processes on the inner continental shelf off the west coast (middle part) of Korea, The Journal of the Korean Society of Oceanography, 29(4), 357-365.
  32. Pirazzoli, P. A., 1991, World Atlas of Holocene Sea-Level Changes. Elsevier, Amsterdam, 300pp.
  33. Posamentier, H. W., Jervey, M. T., and Vail, P. R., 1988, Eustatic controls on clastic deposition I-Conceptual framework. In: Wiligus, C. K., Posamentier, H., Ross, C. A., and Kendall, C. G. St. C., (eds.), Sea-Level Changes: An Integrated Approach, SEPM Sepc. Publ., 42, 124-154.
  34. Praston, L. F., and Laine, E. P., 1989, The relative importance of gravity-induced versus current-controlled sedimentation during the Quaternary along the mideast United-States outer continental-margin revealed by 3.5 kHz echo character, Marine Geology, 89, 87-126. https://doi.org/10.1016/0025-3227(89)90029-7
  35. Shinn, Y. J., Chough, S. K., Kim, J. W., Lee, S. H., Woo, J., Jin, J. H., Hwang, S. Y., Choi, S. H., and Suh, M. C., 2004, High-Resolution seismic reflection studies of late Quaternary sediments in the eastern Yellow Sea. In: Clift, P., Wang, P., Kuhnt, W., Hayes, D. (Eds.), Ocean-Continent Interactions Within East Asian Marginal Seas, AGU Geophysical Monograph Series, 149, 175-191.
  36. Shinn, Y. J., Chough, S. K., Kim, J. W., and Woo, J., 2007, Development of depositional systems in the southeastern Yellow Sea during the postglacial transgression, Marine Geology, 239, 59-82. https://doi.org/10.1016/j.margeo.2006.12.007
  37. Stride, A. H., Belderson, R. H., Kenyon, N. H., and Jonson, N. H., 1982, Offshore tidal deposits: sand sheet and sand bank facies. InL Strife, A. H. (Ed.), Offshotre Tidal Sands: Processes and Deposits. Chapman and Hall, London, 95-125.
  38. Zhao, S., 1990, The desertization and its dertved deposits of Yellow Sea shelf during the Last stage of the Late Pleistocene, The Korean Journal of Quaternary Research, 4, 69-71.