DOI QR코드

DOI QR Code

자력이상 3차원 모델링 및 역산

3D Modeling and Inversion of Magnetic Anomalies

  • 투고 : 2013.02.04
  • 심사 : 2013.06.05
  • 발행 : 2013.08.31

초록

자력탐사자료의 3차원 역산법을 개발하였다. 자력탐사자료의 역산에서 가장 문제가 되는 점은 비유일해 문제와 방대한 계산시간이다. 일반적으로 자력탐사자료의 역산은 모델변수의 수가 자료의 수보다 훨씬 많아 비유일해 문제를 더욱 심화시키게 된다. 또한 자력탐사자료는 심도 분해능이 매우 낮다. 비유일해 문제를 극복하기 위하여 분해능이 높은 모델변수에는 큰 제한을 가하고, 작은 모델변수에는 약한 제한을 가하는 분해능 모델제한자를 제안하고, 이를 적용하여 분해능이 낮은 모델변수도 효과적으로 추정할 수 있었다. 또한 대형 행렬식을 웨이블릿 변환을 통하여 희소행렬로 변환하고, 역행렬의 계산에 병렬계산 방식을 적용하여 계산시간을 획기적으로 절감하였다. 수치실험을 통하여 개발된 3차원 역산알고리듬의 타당성을 검토하였다. 또한 금산 지역에서 얻어진 항공자력탐사자료의 역산에 적용하였다.

We developed a method for inverting magnetic data to recover the 3D susceptibility models. The major difficulty in the inversion of the potential data is the non-uniqueness and the vast computing time. The insufficient number of data compared with that of inversion blocks intensifies the non-uniqueness problem. Furthermore, there is poor depth resolution inherent in magnetic data. To overcome this non-uniqueness problem, we propose a resolution model constraint that imposes large penalty on the model parameter with good resolution; on the other hand, small penalty on the model parameter with poor resolution. Using this model constraint, the model parameter with a poor resolution can be effectively resolved. Moreover, the wavelet transform and parallel solving were introduced to save the computing time. Through the wavelet transform, a large system matrix was transformed to a sparse matrix and solved by a parallel linear equation solver. This procedure is able to enormously save the computing time for the 3D inversion of magnetic data. The developed inversion algorithm is applied to the inversion of the synthetic data for typical models of magnetic anomalies and real airborne data obtained at the Geumsan area of Korea.

키워드

참고문헌

  1. Bhattacharyya, B. K., 1964, Magnetic anomalies due to prismshaped bodies with arbitrary magnetization, Geophysics, 29, 517-531. https://doi.org/10.1190/1.1439386
  2. Bhattacharyya, B. K., 1980, A generalized multibody model for inversion of magnetic anomalies, Geophysics, 45, 255-270. https://doi.org/10.1190/1.1441081
  3. Constable, S. C., Parker, R. L., and Constable, C. G., 1987, Occam's inversion: a practical algorithm for generating smooth models from EM sounding data, Geophysics, 52, 289-300. https://doi.org/10.1190/1.1442303
  4. Daubechies, I., 1992, Ten lectures on wavelets, SIAM, Philadilphia, PA.
  5. Hong, S. H., and Choi, W. C., 1978, Explanatory text of the geological map of Geumsan sheet (1:50,000), Korea research institute of geoscience and mineral resources, 20-21.
  6. Kim, H. J., Song, Y., and Lee, K. H., 1999, Inequality constraint in least-squares inversion of geophysical data, Earth Planets Space, 51, 255-259. https://doi.org/10.1186/BF03352229
  7. Kunaratnam, K., 1981, Simplified expression for the magnetic anomalies due to vertical rectangular prism, Geophysical Prospecting, 67, 883-890.
  8. Last, B. J., and Kubik, K., 1983, Compact gravity inversion, Geophysics, 48, 713-721. https://doi.org/10.1190/1.1441501
  9. Li, Y., and Oldenburg, D. W., 1996, 3-D inversion of magnetic data, Geophysics, 61, 394-408. https://doi.org/10.1190/1.1443968
  10. Li, Y., and Oldenburg, Y., 2003, Fast inversion large-scale magnetic data using wavelet transforms and a logarithmic barrier method, Geophysical Journal International, 152, 251-265. https://doi.org/10.1046/j.1365-246X.2003.01766.x
  11. Menke, W., 1984, Geophysical data analysis: Discrete inverse theory, Academic Press Inc.
  12. Pilkington, M., 1997, 3-D magnetic imaging using conjugate gradients, Geophysics, 62, 1132-1142. https://doi.org/10.1190/1.1444214
  13. Portniaguine, O., and Zhdanov, M. S., 2002, 3-D magnetic inversion with data compression and image focusing, Geophysics, 67, 1532-1541. https://doi.org/10.1190/1.1512749
  14. Rao, B. D., and Babu, N. R., 1991, A rapid method for threedimensional modeling of magnetic anomalies, Geophysics, 56, 1729-1737. https://doi.org/10.1190/1.1442985
  15. Yi, M. J., Kim, J. H., and Chung, S. H., 2003, Enhancing the resolving power of least-squares inversion with active constraint balancing, Geophysics, 68, 931-941. https://doi.org/10.1190/1.1581045