DOI QR코드

DOI QR Code

Vertical Upward Air-Water Two-Phase Flow Regime Identification

수직상향류 공기-물 이상유동영역 판별

  • Lee, Ba-Ro (Department of Nuclear and Energy Engineering, Jeju National University) ;
  • Jang, Young-Jun (Department of Nuclear and Energy Engineering, Jeju National University) ;
  • Ko, Min-Seok (Department of Nuclear and Energy Engineering, Jeju National University) ;
  • Lee, Bo-An (Institute for Nuclear Science and Technology, Jeju National University) ;
  • Lee, Yeon-Gun (Institute for Nuclear Science and Technology, Jeju National University) ;
  • Kim, Sin (Department of Nuclear and Energy Engineering, Jeju National University)
  • 이바로 (제주대학교 에너지공학과) ;
  • 장영준 (제주대학교 에너지공학과) ;
  • 고민석 (제주대학교 에너지공학과) ;
  • 이보안 (제주대학교 원자력과학기술연구소) ;
  • 이연건 (제주대학교 원자력과학기술연구소) ;
  • 김신 (제주대학교 에너지공학과)
  • Received : 2013.08.05
  • Accepted : 2013.11.18
  • Published : 2013.12.31

Abstract

Two-phase flow is frequently observed in many industries such as nuclear power plants and oil transportation. Two-phase flow regime depends on the flow rates, the fluid properties and the structure of flow channels. Since the identification of the flow regime is of great importance in the system design and the safety analysis, a number of theoretical and experimental investigations have been performed. This paper presents a basic research on the characteristics of each flow regime and transition boundary in the two-phase flows. The flow regime of the upward air-water flow in the vertical tube, 30 mm in the inner diameter, is distinguished by using the high-speed camera and the Wire-mesh sensor(WMS). The identified experimental data are compared with the flow regime maps proposed by Taitel et al, Mishima and Ishii. Even though there is slight difference in the transition boundary, the experimental data show general agreement with these flow regime maps.

이상유동은 원자력 발전소 내 노심과 석유 수송 등 여러 산업 분야에서 빈번히 관찰된다. 이상유동영역은 두 상의 성질과 유량의 차이, 그리고 유로의 구조에 따라 결정된다. 유동영역의 판별은 시스템 설계 및 안전 해석에 있어 중요하기 때문에 많은 이론과 실험 연구들이 수행되었다. 본 연구는 파이프 내의 이상유동장에서 각 이상유동영역 및 천이경계에서의 특징 파악을 위한 기초 연구로서, 30 mm의 내경을 갖는 수직관의 수직상향류 공기-물 이상유동영역을 고속카메라와 Wire-mesh sensor(WMS)를 이용하여 판별하였다. 또한 유동양식을 정량적으로 판별하기 위해 액막 두께를 적용하였다. 판별한 실험 데이터를 Taitel 외와 Mishima와 Ishii의 유동양식선도와 비교하였다. 실험을 통해 판별한 유동영역은 기존의 유동양식선도와 전체적으로 잘 일치함을 보였다.

Keywords

References

  1. Hewitt, G. F. and Roberts, D. N.: "Studies of two-phase flow patterns by simultaneous X-ray and flow photography", United Kingdom Atomic Energy Authority Report AERE-M 2159 (1969)
  2. Taitel, Y., Barnea, D., Dukler, A. E.: "Modeling flow pattern transition for steady upward gas-liquid flow in vertical tubes", J. AIChE., 26, pp.345-354 (1980) https://doi.org/10.1002/aic.690260304
  3. Mishima, K. and Ishii, M.: "Flow regime transition criteria for upward two-phase flow in vertical tubes", Int. J. Heat Mass Transfer, 27, pp.723-736 (1984) https://doi.org/10.1016/0017-9310(84)90142-X
  4. Wallis, G. B.: "One-dimensional two-phase flow: Chapter 7", McGraw-Hill, New York 11 (1969)
  5. Hinze, J. O.: "Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes", AIChE., 1, pp.289-295 (1955) https://doi.org/10.1002/aic.690010303
  6. Brodkey, R. S.: "The phenomena of fluid motion", Addison-Wesley Press (1967)
  7. Govan, A. H., Hewitt, G. F., Richter, H. J., Scott, A.: "Flooding and churn flow in vertical pipes", Int. J. Multiphase Flow, 17, pp.27-44 (1991) https://doi.org/10.1016/0301-9322(91)90068-E
  8. Jayanti, S. and Hewitt, G. F.: "Prediction of the slug-to-churn flow transition in vertical two-phase flow", Int. J. Multiphase Flow, 18, pp.847-860 (1992) https://doi.org/10.1016/0301-9322(92)90063-M
  9. Spedding, P. L., Woods, G. S., Raghunathan, R. S., Watterson, J. K.,: "Vertical two-phase flow Part 1: Flow regimes", I. Chem. E., 76, pp.612-619 (1998)
  10. Mossis, R. and Griffith, P.: "Entrance effects in a two-phase slug flow", J. Heat Transfer, 84, pp.29-38 (1962) https://doi.org/10.1115/1.3684284
  11. Nicklin, D. J. and Davidson, J. F.: "The onset of instability in two-phase slug flow", Inst. Mech. Engr., Proc. of Symp. on Two-Phase Flow, Paper 4 (1962)
  12. Turner, R. G., Hubbard, M. G., Dukler, A. E.,: "Analysis and prediction of minimum flow rate for the continuous removal of liquid from gas wells", J. Petroleum Tech., 21, pp.1475-1482 (1969) https://doi.org/10.2118/2198-PA
  13. Prasser, H. -M., Bottger, A., Zschau, J.: "A new electrode-mesh tomograph for gas-liquid flows", Flow Measurement and Instrumentations, pp.111-119 (1998)
  14. Prasser, H. -M., Scholz, D., Zippe, C.: "Bubble size measurement using wire-mesh sensors", Flow Measurement and Instrumentations, pp.299-312 (2001)
  15. Prasser, H. -M., Krepper, E., Lucas, D.: "Evolution of the two-phase flow in a vertical tube-decomposition of gas fraction profiles according to bubble size classes using wire-mesh sensors", Int. J. Therm Sci, pp.17-28 (2002)
  16. Ishii, M.: "One-dimensional drift-flux model and constitutive equations for relative motion between phases in various two-phase flow regimes", ANL Report, ANL-77-47 (1977)
  17. Hibiki, T. and Ishii, M.: "One-dimensional drift-flux model for two-phase flow in a large diameter pipe", Int. J. Heat Mass Transfer, 46, pp.1773-1790 (2003) https://doi.org/10.1016/S0017-9310(02)00473-8
  18. Hewitt, G. F. and Hall-Taylor, N. S.: "Annular two-phase flow", Pergamon Press. (1970)
  19. Wang, K., Bai, B., Cui, J., Ma, W.: "A physical model for huge wave movement in gas-liquid churn flow", Chemical Engineering Science, 79, pp.19-28 (2012) https://doi.org/10.1016/j.ces.2012.05.011
  20. Chen, X. T. and Brill, J. P.: "Slug to churn transition in upward vertical two-phase flow", Chemical Engineering Science, 52, pp.4269-4272 (1997) https://doi.org/10.1016/S0009-2509(97)00178-4