The external benefit of combustible waste-to-energy: A contingent valuation study

가연성 폐기물 에너지화의 외부편익 : 조건부 가치측정법의 적용

  • Lim, Seul-Ye (Department of Energy Policy, Graduate School of Energy & Environment, Seoul National University of Science & Technology) ;
  • Kim, Ho-Young (Department of Energy Policy, Graduate School of Energy & Environment, Seoul National University of Science & Technology) ;
  • Yoo, Seung-Hoon (Department of Energy Policy, Graduate School of Energy & Environment, Seoul National University of Science & Technology)
  • 임슬예 (서울과학기술대학교 에너지환경대학원 에너지정책학과) ;
  • 김호영 (서울과학기술대학교 에너지환경대학원 에너지정책학과) ;
  • 유승훈 (서울과학기술대학교 에너지환경대학원 에너지정책학과)
  • Received : 2013.08.21
  • Accepted : 2013.09.16
  • Published : 2013.09.30


Combustible waste into energy policy is an effective method to respond to climate change and depletion of fossil fuels. Combustible waste into energy is the process of generating energy in the form of electricity and/or heat from the combustible waste such as vinyl, paper and plastic. This study tries to estimate the external benefit of enhancing the ratio of combustible waste into energy to primary energy from 1.89% to 5% using contingent valuation(CV) method. To this end, we report the results from a CV survey to elicit the willingness to pay (WTP) for combustible waste into energy. A CV survey of 500 households was conducted in the Seoul by using person-to-person interviews. Thus, the procedures of applying and the findings from the one-and-one-half bounded dichotomous choice spike model used to deal with the zero WTP responses are provided in the paper. The results show that the average WTP is estimated to be 2,724 won per household per month and statistically significant at the 5% level. Expanding the value to the Seoul gives us an aggregate value of 13.7 billion won per year.

기후변화 및 화석연료 고갈에 대한 국가적 대응 차원으로 가연성 폐기물 에너지화가 진행되고 있다. 가연성 폐기물 에너지화란 비닐, 종이와 같은 폐기물을 전용보일러나 발전소에서 전기나 열을 생산하는 데 연료로 사용 할 수 있도록 고형연료로 제조하여 에너지로 전환하는 것이다. 본 논문은 조건부 가치측정법(CVM, Contingent Valuation Method)을 적용하여 폐기물에너지가 전체 에너지 소비에서 차지하는 비중을 현재의 1.89%에서 2020년까지 5%로 확대하는 정책의 시행으로부터 발생하는 외부적 편익을 추정하고자 한다. 이를 위해 지불의사액(WTP, willingness to pay)을 도출하고자 서울시 500가구를 대상으로 면대면 설문조사를 실시하여 CVM을 적용하였다. 지불의사 유도방법으로 1.5경계 양분선택모형과 영(0)의 WTP를 처리하기 위한 스파이크 모형을 결합한 분석모형을 적용한 결과 폐기물 에너지화에 대한 매월 가구당 평균 WTP는 2,724원으로 유의수준 5%에서 통계적으로 유의하게 추정되었다. 이를 서울시 전체로 확장하면 연간 137억원에 달한다.



  1. 국무총리실, 기획재정부, 교육과학기술부, 외교통상부, 지식경제부, 환경부, 국토해양부. 제1차 국가에너지기본계획(2008-2030), 2008.
  2. 교육과학기술부, 행정안전부, 농림수산식품부, 지식경제부, 환경부, 국토해양부, 산림청. 폐자원 및 바이오매스 에너지 대책 실행계획, 2009.
  3. 환경부. 폐기물에너지화 종합대책, 2008.
  4. 환경부, 행정안전부, 농림수산식품부, 지식경제부, 국토해양부. 제1차 자원순환기본계획 (2011-2015), 2011.
  5. Arrow K, Solow R, Portney PR, Leamer EE, Radner R, Schuman H. Report of the NOAA panel on contingent valuation. Federal Register, 1993, 58, 4601-4014.
  6. Bjornstad DJ, Kahn JR. The Contingent Valuation of Environmental Resources: Methodological Issues and Research Needs, Cheltenham: Edward Elgar, 1996.
  7. Borchers AM, Duke JM, Parsons GR. Does willingness to pay for green electricity differ by source? Energy Policy, 2007, 35, 3327-34.
  8. Brent RJ. Applied Cost-Benefit Analysis, Cheltenham: Edward Elgar. 1995.
  9. Carson RT, Groves T. Incentive and informational properties of preference questions. Environmental and Resource Economics, 2007, 37, 181-210.
  10. Cooper JC. A comparison of approaches to calculating confidence intervals for benefit measure from dichotomous choice contingent valuation survey. Land Economics, 1994, 70, 111-122.
  11. Cooper JC, Hanemann WM, Signorello G. One and one-half bound dichotomous choice contingent valuation. Review of Economics and Statistics, 2002, 84, 742-750.
  12. Hanemann WM. Welfare evaluations in contingent valuation experiments with discrete responses. American Journal of Agricultural Economics, 1984, 66, 332-341.
  13. Hite D, Duffy P, Bransby D, Slaton C. Consumer willingness-to-pay for biopower: Results from focus groups. Biomass and Bioenergy, 2008, 32, 11-17.
  14. IPCC(Intergovernmental Panel on Climate Change), IPCC Fourth Assessment Report: Climate Change 2007. 2007.
  15. Krinsky I, Robb AL. On approximating the statistical properties of elasticities. Review of Economics and Statistics, 1986, 68, 715-719.
  16. Kristrom B. Spike models in contingent valuation. American Journal of Agricultural Economics, 1997, 79, 1013-1023.
  17. Mitchell RC, Carson RT. Using Surveys to Value Public Goods: The Contingent Valuation Method, Washington, D.C.: Resources for the Future. 1989.
  18. Park TJ, Loomis B, Creel M. Confidence intervals for evaluating benefits estimates from dichotomous choice contingent valuation studies. Land Economics, 1991, 67, 64-73.
  19. Solino M, Prada A, Va'zquez M.X. Designing a forest-energetic policy to reduce forest fires in Galicia(Spain): a contingent valuation application. Journal of Forest Economic, 2010, 16, 217-233.
  20. Solino M, Farizo BA, Vazquez MX, Prada A. Generating electricity with forest biomass: Consistency and payment timeframe effects in choice experiments. Energy Policy, 2012, 41, 798-806.
  21. Solino M. External benefits of biomass-e in Spain: An economic valuation. Bioresource Technology, 2010, 101, 1992-1997.
  22. Solomon BD, Johnson NH. Valuing climate protection through willingness to pay for biomass ethanol. Ecological Economics, 2009, 68, 2137-2144.
  23. Susaeta A, Lal P, Alavalapati J, Mercer E. Random preferences towards bioenergy environmental externalities: A case study of woody biomass based electricity in the Southern United States. Energy Economics, 2011, 33, 1111-1118.
  24. Yoo SH, Kwak SJ, Kim TY. Modeling willingness to pay responses from dichotomous choice contingent valuation surveys with zero observations. Applied Economics, 2001, 33, 523-529.
  25. Yoo SH, Kwak SJ. Using a spike model to deal with zero response data from double bounded dichotomous contingent valuation survey. Applied Economics Letters, 2002, 9, 929-932.

Cited by

  1. The Conservation Value of Coral Communities in Moonseom Ecosystem Protected Area vol.24, pp.1, 2018,