DOI QR코드

DOI QR Code

Quantitative Damage Index of RC Columns with Non-seismic Details

비내진상세를 가지는 철근콘크리트 기둥의 정량적 손상도 평가 기준

  • Received : 2013.08.29
  • Accepted : 2013.09.29
  • Published : 2013.11.30

Abstract

In this paper, the quantitative damage index for reinforced concrete (RC) columns with non-seismic details were presented. They are necessary to carry out the postearthquake safety evaluation of RC buildings under 5 stories without seismic details. The static cyclic test of the RC frame sub-assemblage that was an one span and actual-sized was first conducted. The specimen collapsed by the shear failure after flexural yielding of a column, lots of cracks on the surfaces of columns and beam-column joints and the cover concrete splitting at the bottom of columns occurred. The damage levels of these kinds of columns with non-seismic details were classified to five based on the load-displacement relationship by the test result. The residual story drift ratios and crack widths were then adapted as the quantitative index to evaluate the damage limit states because those values were comparatively easy to measure right after earthquakes. The highest one among the residual story drift ratios under the similar maximum story drift ratio decided on the residual story drift ratio of each damage limit state. On the other hand, the lowest and average ones among the respective residual shear and flexural widths under the similar maximum story drift ratio decided on the residual shear and flexural widths of each damage limit state, respectively. These values for each damage limit state resulted in being smaller than those by the international damage evaluation guidelines that are for seismically designed members under the same deformations.

5층 이하 비내진상세를 가지는 철근콘크리트 건축물의 지진시 긴급 위험도 평가를 위한 부재의 정량적 손상도 평가 기준을 제시하기 위하여 실대형 크기의 철근콘크리트 1층 1경간 골조 실험체의 정적실험을 실시하였다. 실험결과, 실험체는 기둥의 휨항복후 전단파괴에 의하여 파괴되었으며, 기둥과 접합부에 균열, 압괴 등의 손상이 발생한 반면, 보에는 균열 등의 손상이 거의 발생하지 않았다. 이와 같이 비내진상세를 가지며 휨항복후 전단파괴하는 철근콘크리트 기둥의 손상도를 5단계로 분류하고 손상단계별 한계상태를 평가하기 위한 정량적 기준으로서 지진시 상대적으로 측정이 용이한 잔류 층간변형각과 잔류 균열폭을 이용하였다. 손상한계상태의 잔류 층간변형각 및 잔류 균열폭은 실험결과에 따른 손상한계상태의 최대 층간변형각과의 관계에 의하여 결정하였으며, 한계 최대 층간변형각은 실험결과에 의한 부재의 하중-변형 관계 및 손상발생 현황을 바탕으로 결정하였다. 한계 잔류 층간변형각은 해당 최대 층간변형각에 의한 잔류 층간변형각 중의 최대값 이상이 되도록 하였으며, 한계 잔류 균열폭은 해당 최대 층간변형각에 의한 잔류 전단균열폭의 최소값 및 잔류 휨균열폭의 평균값으로 결정하였다. 한편, 본 논문을 통하여 제시한 손상한계상태의 잔류 층간변형각과 잔류 균열폭은 지진으로 동일한 부재 변형이 발생할 경우 내진설계가 실시된 부재를 대상으로 하는 국외 손상도 평가 기준에 의한 값보다 작은 것으로 나타났다.

Keywords

References

  1. AIJ, "Guidelines for Performance Evaluation of Earthquake Resistance RC Buildings", Architectural Institute of Japan, 2004.
  2. ATC 20, Procedures for Postearthquake Safety Evaluation of Buildings, Applied Technology Council, 1989.
  3. Bunno, M., Maeda, M. and Nagata, M., "Damage Level Classification of Reinforced Concrete Buildings based on Member Residual Seismic Performance", Prod. of JCI, Vol. 22, No. 3, 2000, pp.1447-1452.
  4. Bunno, M., Sawamura, M., Maeda, M. and Kabeyasawa, T., "Experimental Study on Behavior of Reinforced Concrete Beams under Axial Restriction", Prod. of JCI, Vol. 21, No. 3, 1999, pp.517-522.
  5. Hamburger, R., Rojahn, C., Moehle, J., Bachman, R., Comartin, C. and Whittaker, A., "The ATC-58 Project: Development of Next-Generation Performance-Based Earthquake Engineering Design Criteria for Buildings", 13th WCEE, Vancouver, B.C., Canada, Aug. 2004.
  6. JBDPA, Postearthquake Safety Evaluation and Retrofit, Japan Building Disaster Prevention Association, 2001.
  7. KBC, Korean Building and Commentary, Architectural Institute of Korea, 2009 (in Korean).
  8. Kim, K., Lee, S. and Oh, S., "Seismic Performance Evaluation of Existing Low-rise RC Frames with Non-seismic Detail", EESK J. Earthquake Eng, Vol. 17, No. 3, 2013, pp.97-105 (in Korean). https://doi.org/10.5000/EESK.2013.17.3.97
  9. Lee, Y., Jeoung, C., Lee, E., Kim, M. and Choi, K., "Seismic Performance Evaluation of Neighborhood Living Facilities Considering Deterioration", Journal of the Korea Institute for Structural Maintenance and Inspection, Vol. 17, No. 1, 2013, pp.55-63 (in Korean). https://doi.org/10.11112/jksmi.2013.17.1.055
  10. Moehle, J. and Deierlien, G. G., "A Framework Methodology for Performance-Based Earthquake Engineering", 13th WCEE, Vancouver, B.C., Canada, Aug. 2004.
  11. NZSEE, Building Safety Evaluation during a State of Emergency, New Zealand Society for Earthquake Engineering, 2009.
  12. SEAOC, Vision 2000 - Performance Based Seismic Engineering of Buildings, CA. 1995.
  13. Walraven, J. C., "Fundamental Analysis of Aggregate Interlock", J. of the Structural Devision, ASCE, Vol. 107, No. ST11, 1981, pp.2245-2270.

Cited by

  1. Crack Width Properties on RC Members with Non-seismic Details vol.14, pp.3, 2014, https://doi.org/10.9798/KOSHAM.2014.14.3.27
  2. 정적실험을 통한 조적채움벽체가 비내진상세 RC 골조의 내진성능에 미치는 영향 평가 vol.21, pp.3, 2013, https://doi.org/10.11112/jksmi.2017.21.3.114
  3. Static Loading Test for Performance Evaluation of Dual-Frame Type Seismic Retrofit System vol.10, pp.4, 2013, https://doi.org/10.11004/kosacs.2019.10.4.038