DOI QR코드

DOI QR Code

Comparative analysis of useful β-glucan and polyphenol in the fruiting bodies of Ganoderma spp.

영지버섯 균주별 자실체의 베타글루칸과 폴리페놀 함량 비교 분석

  • Cho, Jae-Han (Mushroom Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Lee, Jee-Young (Mushroom Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Lee, Min-Jung (Mushroom Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Oh, Ha-Na (Mushroom Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Kang, Don-Ho (Mushroom Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Jhune, Chang-Sung (Mushroom Research Division, National Institute of Horticultural & Herbal Science, RDA)
  • 조재한 (국립원예특작과학원 버섯과) ;
  • 이지영 (국립원예특작과학원 버섯과) ;
  • 이민정 (국립원예특작과학원 버섯과) ;
  • 오하나 (국립원예특작과학원 버섯과) ;
  • 강돈호 (국립원예특작과학원 버섯과) ;
  • 전창성 (국립원예특작과학원 버섯과)
  • Received : 2013.09.10
  • Accepted : 2013.09.27
  • Published : 2013.09.30

Abstract

This study was carried out to compare the medicinal effects of various fruiting body of Ganoderma species and Cordyceps militaris, Phelinus linteus extracts. ${\beta}$-glucan and polyphenol are useful ingredient in mushrooms and they were known to have antioxidant activity. We analyzed ${\beta}$-glucan and polyphenol contents of fruiting body of Ganoderma spp., Cordyceps militaris, and Phellinus linteus. Most Ganoderma spp. exhibited ${\beta}$-glucan contents of 15 to 20%. Cordyceps militalis showed the highest ${\beta}$-glucan level of 25%. Interestingly, eight strains of Ganoderma spp. was analyzed to have higher contents of ${\beta}$-glucan than Phelinus linteus. Polyphenol contents was measured after extraction with different solvents. (D.W., 70% EtOH, 80% MeOH) The level of polyphenol in ASI 7020 strain was at maximum in the water extraction and ASI 7086 showed the highest level in the 70% EtOH extraction. The amounts of polyphenol in strain ASI 7113 was at maximum in the 80% MeOH extraction.

영지버섯을 재배하여 자실체를 수확 한 후, 버섯류의 유용성분으로 알려진 베타글루칸과 폴리페놀에 대한 성분 함량을 비교 분석하였다. 영지버섯 대부분의 베타글루칸 함량은 15~20%정도 이었다. 상황버섯의 함량 17.5%보다 높게 나온 영지버섯 균주는 8균주로 ASI 7017, 7019, 7022, 7039, 7058, 7069, 7071, 7113, 7148이었으며, 그 중 ASI 7017은 19.2%로 가장 높았다. 또한 용매를 달리하여 추출해서 얻은 각각의 폴리페놀 함량은 많게는 10배 이상 차이가 나는 것을 알 수 있었다. 이것은 달리 말하자면 각각의 버섯에 맞는 용매를 써야 보다 효율적으로 유용성분이 추출된다는 것을 말해 주는 분석 결과이다. 이러한 연구 결과는 좀더 많은 버섯을 비교하여 추후 식용 빛 약용버섯류의 기능성 평가를 위한 기초자료로 활용될 수 있다.

Keywords

References

  1. Kim SS, Kim YS. 1990. Korean mushrooms. Yupoong Publishing Co., Seoul, Korea. p 3.3.
  2. Kim HJ, Lee IS. 2004. Anti-mutagenic and cytotoxic effects of Korean wild mushrooms extracts. Korean J Food Sci Technol 36 : 662-668.
  3. Choi SJ, Lee YS, Kim JK, Lim SS. 2010. Physiological activities of extract from edible mushrooms. J Korean Soc Food Sci Nutr 39 : 1087-1096. https://doi.org/10.3746/jkfn.2010.39.8.1087
  4. Yang JH, Lin HC, Mau JL. 2002. Antioxidant properties of several commercial mushrooms. Food Chem 77 : 229-235. https://doi.org/10.1016/S0308-8146(01)00342-9
  5. Mus JL, Lin HC, Song SF. 2002. Antioxidant properties of several specialty mushrooms. Food Res Int 35 : 519-526. https://doi.org/10.1016/S0963-9969(01)00150-8
  6. Choi YH, Kim MJ, Lee HS, Yun BS, Hu C, Kwak SS. 1998. Antioxidative compounds in aerial parts of Potentilla fragariodes. Korean J Pharmacogn 29 : 79-85.
  7. A. O. A. C. 1984. Official methods of analysis, 14th ed., Association of Official Analytical Chemists. Washington, D. C.
  8. Agnese, A. M., C. Perez, and J. L. Cabrera. 2001. Adesmia aegiceras : antimicrobial activity and chemical study. Phytomedicine. 8(5) : 389-394. https://doi.org/10.1078/0944-7113-00059
  9. Blosi, M. S. 1958. Antioxidant determinations by use of a stable free radical. Nature. 26 : 1199-1200.
  10. Chan, G.C., W.K. Chan, and D.M. Sze, The effects of betaglucan on human immune and cancer cells. J. Hematol. Oncol. 2 : 25 (2009). https://doi.org/10.1186/1756-8722-2-25
  11. Choi, J. S., S. H. Park, and I. S. Kim. 1989. Studies on the active principles of wild vegetables on biotransformation of drug. Kor. J. Pharmacogn. 20 : 117-122.
  12. Chon, S. U., C. H. Bae, and S. C. Lee. 2012. Antioxidant and cytotoxic potentials of methanol extracts from Taraxacum officinale F. H. Wigg. at different plant parts. Kor. J. Plant Res. 25(2) : 232-239. https://doi.org/10.7732/kjpr.2012.25.2.232
  13. Dellinger, E.P., et al., Effect of PGG-glucan on the rate of serious postoperative infection or death observed after high risk gastrointestinal operations. Betafectin Gastrointestinal Study Group. Arch. Surg. 134(9) : 977-983 (1999). https://doi.org/10.1001/archsurg.134.9.977
  14. Liu, J., et al., Combined yeast-derived beta-glucan with antitumor monoclonal antibody for cancer immunotherapy. Exp.Mol. Pathol. 86(3) : 208-214 (2009). https://doi.org/10.1016/j.yexmp.2009.01.006
  15. Mueller, A., et al., The influence of glucan polymer structure and solution conformation on binding to (1-->3)- beta-D-glu-can receptors in a human monocyte-like cell line. Glycobiology. 10(4) : 339-346 (2000). https://doi.org/10.1093/glycob/10.4.339
  16. Novak, M. and V. Vetvicka, Beta-glucans, history, and the present: immunomodulatory aspects and mechanisms of action. J Immunotoxicol. 5(1) : 47-57 (2008) https://doi.org/10.1080/15476910802019045
  17. Ramberg, J.E., E.D. Nelson, and R.A. Sinnott, Immunomodulatory dietary polysaccharides: a systematic review of the literature. Nutr. J. 9 : 54 (2010). https://doi.org/10.1186/1475-2891-9-54
  18. Schepetkin, I.A. and M.T. Quinn, Botanical polysaccharides: macrophage immunomodulation and therapeutic potential. Int. Immunopharmacol. 6(3) : 317-333 (2006). https://doi.org/10.1016/j.intimp.2005.10.005
  19. Wakshull, E., et al., PGG-glucan, a soluble beta-(1,3)-glucan, enhances the oxidative burst response, microbicidal activity, and activates an NF-kappa B-like factor in human PMN: evidence for a glycosphingolipid beta-(1,3)- glucan receptor. Immunopharmacology. 41(2) : 89-107 (1999). https://doi.org/10.1016/S0162-3109(98)00059-9

Cited by

  1. Shelf life of β-glucan microcapsules from the medicinal mushrooms (Phellinus baumii and Ganoderma lucidum) vol.25, pp.6, 2018, https://doi.org/10.11002/kjfp.2018.25.6.634
  2. Characteristics of mushroom Phellinus baumii extracts with enzyme pretreatment vol.61, pp.1, 2018, https://doi.org/10.3839/jabc.2018.015