DOI QR코드

DOI QR Code

A role for endocannabinoids in acute stress-induced suppression of the hypothalamic-pituitary-gonadal axis in male rats

  • Karamikheirabad, Maryam (Department of Physiology, School of Medicine, Tehran University of Medical Science) ;
  • Behzadi, Gila (Department of Physiology, Medical School, Shahid Beheshti Medical Sciences University) ;
  • Faghihi, Mahdieh (Department of Physiology, School of Medicine, Tehran University of Medical Science) ;
  • Raoofian, Reza (Department of Medical Genetics, Tehran University of Medical Sciences) ;
  • Mehr, Shahram Ejtemaei (Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences) ;
  • Zuure, Wieteke Ameliek (Centre for Neuroendocrinology and Department of Anatomy, University of Otago School of Medical Sciences) ;
  • Sadeghipour, Hamid Reza (Department of Physiology, School of Medicine, Tehran University of Medical Science)
  • 투고 : 2013.08.18
  • 심사 : 2013.10.31
  • 발행 : 2013.12.31

초록

Objective: Stress is known to be an inhibitor of the reproductive hypothalamic-pituitary-gonadal (HPG) axis. However, the neural and molecular connections between stress and reproduction are not yet understood. It is well established that in both humans and rodents, kisspeptin (encoded by the kiss1 gene) is a strong stimulator of the HPG axis. In the present study we hypothesized that endocannabinoids, an important neuromodulatory system in the brain, can act on the HPG axis at the level of kiss1 expression to inhibit reproductive function under stress. Methods: Adult male Wistar rats were unilaterally implanted with an intracerebroventricular cannula. Afterwards, the animals were exposed to immobilization stress, with or without the presence of the cannabinoid CB1 receptor antagonist AM251 (1 ${\mu}g/rat$). Blood samples were collected through a retro-orbital plexus puncture before and after stress. Five hours after the stress, brain tissue was collected for reverse transcriptase-quantitative polymerase chain reaction measurements of kiss1 mRNA. Results: Immobilization stress (1 hour) resulted in a decrease in the serum luteinizing hormone concentration. Additionally, kiss1 gene expression was decreased in key hypothalamic nuclei that regulate gonadotrophin secretion, the medial preoptic area (mPOA), and to some extent the arcuate nucleus (ARC). A single central administration of AM251 was effective in blocking these inhibitory responses. Conclusion: These findings suggest that endocannabinoids mediate, at least in part, immobilization stress-induced inhibition of the reproductive system. Our data suggest that the connection between immobilization stress and the HPG axis is kiss1 expression in the mPOA rather than the ARC.

키워드

참고문헌

  1. Maeda K, Tsukamura H. The impact of stress on reproduction: are glucocorticoids inhibitory or protective to gonadotropin secretion? Endocrinology 2006;147:1085-6. https://doi.org/10.1210/en.2005-1523
  2. Chand D, Lovejoy DA. Stress and reproduction: controversies and challenges. Gen Comp Endocrinol 2011;171:253-7. https://doi.org/10.1016/j.ygcen.2011.02.022
  3. Rivier C, Rivest S. Effect of stress on the activity of the hypothalamic- pituitary-gonadal axis: peripheral and central mechanisms. Biol Reprod 1991;45:523-32. https://doi.org/10.1095/biolreprod45.4.523
  4. Li XF, Bowe JE, Lightman SL, O'Byrne KT. Role of corticotropin-releasing factor receptor-2 in stress-induced suppression of pulsatile luteinizing hormone secretion in the rat. Endocrinology 2005; 146:318-22. https://doi.org/10.1210/en.2004-0950
  5. Bowe JE, Li XF, Kinsey-Jones JS, Brain SD, Lightman SL, O'Byrne KT. The role of corticotrophin-releasing hormone receptors in the calcitonin gene-related peptide-induced suppression of pulsatile luteinising hormone secretion in the female rat. Stress 2008; 11:312-9. https://doi.org/10.1080/10253890701801448
  6. Dong Q, Salva A, Sottas CM, Niu E, Holmes M, Hardy MP. Rapid glucocorticoid mediation of suppressed testosterone biosynthesis in male mice subjected to immobilization stress. J Androl 2004; 25:973-81. https://doi.org/10.1002/j.1939-4640.2004.tb03170.x
  7. Maccarrone M. Endocannabinoids: friends and foes of reproduction. Prog Lipid Res 2009;48:344-54. https://doi.org/10.1016/j.plipres.2009.07.001
  8. Rodriguez de Fonseca F, Del Arco I, Bermudez-Silva FJ, Bilbao A, Cippitelli A, Navarro M. The endocannabinoid system: physiology and pharmacology. Alcohol Alcohol 2005;40:2-14. https://doi.org/10.1093/alcalc/agh110
  9. Hillard CJ. Biochemistry and pharmacology of the endocannabinoids arachidonylethanolamide and 2-arachidonylglycerol. Prostaglandins Other Lipid Mediat 2000;61:3-18. https://doi.org/10.1016/S0090-6980(00)00051-4
  10. Kano M, Ohno-Shosaku T, Hashimotodani Y, Uchigashima M, Watanabe M. Endocannabinoid-mediated control of synaptic transmission. Physiol Rev 2009;89:309-80. https://doi.org/10.1152/physrev.00019.2008
  11. Murphy LL, Munoz RM, Adrian BA, Villanua MA. Function of cannabinoid receptors in the neuroendocrine regulation of hormone secretion. Neurobiol Dis 1998;5:432-46. https://doi.org/10.1006/nbdi.1998.0224
  12. Morgan NH, Stanford IM, Woodhall GL. Modulation of network oscillatory activity and GABAergic synaptic transmission by CB1 cannabinoid receptors in the rat medial entorhinal cortex. Neural Plast 2008;2008:808564.
  13. Tsou K, Brown S, Sanudo-Pena MC, Mackie K, Walker JM. Immunohistochemical distribution of cannabinoid CB1 receptors in the rat central nervous system. Neuroscience 1998;83:393-411. https://doi.org/10.1016/S0306-4522(97)00436-3
  14. Gottsch ML, Cunningham MJ, Smith JT, Popa SM, Acohido BV, Crowley WF, et al. A role for kisspeptins in the regulation of gonadotropin secretion in the mouse. Endocrinology 2004;145: 4073-7. https://doi.org/10.1210/en.2004-0431
  15. Seminara SB, Crowley WF Jr. Kisspeptin and GPR54: discovery of a novel pathway in reproduction. J Neuroendocrinol 2008;20: 727-31. https://doi.org/10.1111/j.1365-2826.2008.01731.x
  16. Smith JT, Clifton DK, Steiner RA. Regulation of the neuroendo crine reproductive axis by kisspeptin-GPR54 signaling. Reproduction 2006;131:623-30. https://doi.org/10.1530/rep.1.00368
  17. Dungan HM, Clifton DK, Steiner RA. Minireview: kisspeptin neurons as central processors in the regulation of gonadotropin-releasing hormone secretion. Endocrinology 2006;147:1154-8. https://doi.org/10.1210/en.2005-1282
  18. Roa J, Castellano JM, Navarro VM, Handelsman DJ, Pinilla L, Tena- Sempere M. Kisspeptins and the control of gonadotropin secretion in male and female rodents. Peptides 2009;30:57-66. https://doi.org/10.1016/j.peptides.2008.08.009
  19. Ohtaki T, Shintani Y, Honda S, Matsumoto H, Hori A, Kanehashi K, et al. Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor. Nature 2001;411:613-7. https://doi.org/10.1038/35079135
  20. Seminara SB, Messager S, Chatzidaki EE, Thresher RR, Acierno JS Jr, Shagoury JK, et al. The GPR54 gene as a regulator of puberty. N Engl J Med 2003;349:1614-27. https://doi.org/10.1056/NEJMoa035322
  21. Dungan HM, Gottsch ML, Zeng H, Gragerov A, Bergmann JE, Vassilatis DK, et al. The role of kisspeptin-GPR54 signaling in the tonic regulation and surge release of gonadotropin-releasing hormone/ luteinizing hormone. J Neurosci 2007;27:12088-95. https://doi.org/10.1523/JNEUROSCI.2748-07.2007
  22. Colledge WH. Kisspeptins and GnRH neuronal signalling. Trends Endocrinol Metab 2009;20:115-21. https://doi.org/10.1016/j.tem.2008.10.005
  23. Kauffman AS, Clifton DK, Steiner RA. Emerging ideas about kisspeptin- GPR54 signaling in the neuroendocrine regulation of reproduction. Trends Neurosci 2007;30:504-11. https://doi.org/10.1016/j.tins.2007.08.001
  24. Pinilla L, Aguilar E, Dieguez C, Millar RP, Tena-Sempere M. Kisspeptins and reproduction: physiological roles and regulatory mechanisms. Physiol Rev 2012;92:1235-316. https://doi.org/10.1152/physrev.00037.2010
  25. Paxinos G, Watson C. The rat brain in stereotaxic coordinates. 4th ed. London: Academic press; 1998.
  26. Kirby ED, Geraghty AC, Ubuka T, Bentley GE, Kaufer D. Stress increases putative gonadotropin inhibitory hormone and decreases luteinizing hormone in male rats. Proc Natl Acad Sci U S A 2009; 106:11324-9. https://doi.org/10.1073/pnas.0901176106
  27. Li XF, Bowe JE, Mitchell JC, Brain SD, Lightman SL, O'Byrne KT. Stress-induced suppression of the gonadotropin-releasing hormone pulse generator in the female rat: a novel neural action for calcitonin gene-related peptide. Endocrinology 2004;145:1556-63. https://doi.org/10.1210/en.2003-1609
  28. Kinsey-Jones JS, Li XF, Knox AM, Wilkinson ES, Zhu XL, Chaudhary AA, et al. Down-regulation of hypothalamic kisspeptin and its receptor, Kiss1r, mRNA expression is associated with stress-induced suppression of luteinising hormone secretion in the female rat. J Neuroendocrinol 2009;21:20-9. https://doi.org/10.1111/j.1365-2826.2008.01807.x
  29. Pfaffl MW, Horgan GW, Dempfle L. Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 2002;30:e36. https://doi.org/10.1093/nar/30.9.e36
  30. Antonovsky A. Health, stress, and coping: new perspectives on mental and physical well-being. San Francisco: Jossey-Bass; 1979.
  31. Li XF, Bowe JE, Kinsey-Jones JS, Brain SD, Lightman SL, O'Byrne KT. Differential role of corticotrophin-releasing factor receptor types 1 and 2 in stress-induced suppression of pulsatile luteinising hormone secretion in the female rat. J Neuroendocrinol 2006; 18:602-10. https://doi.org/10.1111/j.1365-2826.2006.01450.x
  32. Li XF, Kinsey-Jones JS, Bowe JE, Wilkinson ES, Brain SD, Lightman SL, et al. A role for the medial preoptic area in CGRP-induced suppression of pulsatile LH secretion in the female rat. Stress 2009; 12:259-67. https://doi.org/10.1080/10253890802379922
  33. Ohkura S, Uenoyama Y, Yamada S, Homma T, Takase K, Inoue N, et al. Physiological role of metastin/kisspeptin in regulating gonadotropin- releasing hormone (GnRH) secretion in female rats. Peptides 2009;30:49-56. https://doi.org/10.1016/j.peptides.2008.08.004
  34. Li XF, Knox AM, O'Byrne KT. Corticotrophin-releasing factor and stress-induced inhibition of the gonadotrophin-releasing hormone pulse generator in the female. Brain Res 2010;1364:153-63. https://doi.org/10.1016/j.brainres.2010.08.036
  35. Nemoto T, Iwasaki-Sekino A, Yamauchi N, Shibasaki T. Role of urocortin 2 secreted by the pituitary in the stress-induced suppression of luteinizing hormone secretion in rats. Am J Physiol Endocrinol Metab 2010;299:E567-75. https://doi.org/10.1152/ajpendo.00163.2010
  36. Di S, Malcher-Lopes R, Halmos KC, Tasker JG. Nongenomic glucocorticoid inhibition via endocannabinoid release in the hypothalamus: a fast feedback mechanism. J Neurosci 2003;23:4850-7.
  37. Weidenfeld J, Feldman S, Mechoulam R. Effect of the brain constituent anandamide, a cannabinoid receptor agonist, on the hypothalamo-pituitary-adrenal axis in the rat. Neuroendocrinology 1994;59:110-2. https://doi.org/10.1159/000126646
  38. Patel S, Roelke CT, Rademacher DJ, Cullinan WE, Hillard CJ. Endocannabinoid signaling negatively modulates stress-induced activation of the hypothalamic-pituitary-adrenal axis. Endocrinology 2004;145:5431-8. https://doi.org/10.1210/en.2004-0638
  39. Piomelli D. The molecular logic of endocannabinoid signalling. Nat Rev Neurosci 2003;4:873-84. https://doi.org/10.1038/nrn1247
  40. Farkas I, Kallo I, Deli L, Vida B, Hrabovszky E, Fekete C, et al. Retrograde endocannabinoid signaling reduces GABAergic synaptic transmission to gonadotropin-releasing hormone neurons. Endocrinology 2010;151:5818-29. https://doi.org/10.1210/en.2010-0638
  41. Romero J, Wenger T, de Miguel R, Ramos JA, Fernandez-Ruiz JJ. Cannabinoid receptor binding did not vary in several hypothalamic nuclei after hypothalamic deafferentation. Life Sci 1998; 63:351-6. https://doi.org/10.1016/S0024-3205(98)00283-5
  42. Wenger T, Moldrich G. The role of endocannabinoids in the hypothalamic regulation of visceral function. Prostaglandins Leukot Essent Fatty Acids 2002;66:301-7. https://doi.org/10.1054/plef.2001.0353
  43. Spergel DJ, Kruth U, Hanley DF, Sprengel R, Seeburg PH. GABA and glutamate-activated channels in green fluorescent proteintagged gonadotropin-releasing hormone neurons in transgenic mice. J Neurosci 1999;19:2037-50.
  44. Gorzalka BB, Dang SS. Minireview: Endocannabinoids and gonadal hormones: bidirectional interactions in physiology and behavior. Endocrinology 2012;153:1016-24. https://doi.org/10.1210/en.2011-1643
  45. Hill MN, Tasker JG. Endocannabinoid signaling, glucocorticoidmediated negative feedback, and regulation of the hypothalamic- pituitary-adrenal axis. Neuroscience 2012;204:5-16. https://doi.org/10.1016/j.neuroscience.2011.12.030
  46. Atkinson HC, Leggett JD, Wood SA, Castrique ES, Kershaw YM, Lightman SL. Regulation of the hypothalamic-pituitary-adrenal axis circadian rhythm by endocannabinoids is sexually diergic. Endocrinology 2010;151:3720-7. https://doi.org/10.1210/en.2010-0101
  47. Wade MR, Degroot A, Nomikos GG. Cannabinoid CB1 receptor antagonism modulates plasma corticosterone in rodents. Eur J Pharmacol 2006;551:162-7. https://doi.org/10.1016/j.ejphar.2006.08.083
  48. Cota D, Marsicano G, Tschop M, Grubler Y, Flachskamm C, Schubert M, et al. The endogenous cannabinoid system affects energy balance via central orexigenic drive and peripheral lipogenesis. J Clin Invest 2003;112:423-31. https://doi.org/10.1172/JCI17725
  49. Maric D, Kostic T, Kovacevic R. Effects of acute and chronic immobilization stress on rat Leydig cell steroidogenesis. J Steroid Biochem Mol Biol 1996;58:351-5. https://doi.org/10.1016/0960-0760(96)00044-1
  50. Lopez-Calderon A, Ariznavarreta C, Gonzalez-Quijano MI, Tresguerres JA, Calderon MD. Stress induced changes in testis function. J Steroid Biochem Mol Biol 1991;40:473-9. https://doi.org/10.1016/0960-0760(91)90217-S
  51. Stojkov NJ, Janjic MM, Bjelic MM, Mihajlovic AI, Kostic TS, Andric SA. Repeated immobilization stress disturbed steroidogenic machinery and stimulated the expression of cAMP signaling elements and adrenergic receptors in Leydig cells. Am J Physiol Endocrinol Metab 2012;302:E1239-51. https://doi.org/10.1152/ajpendo.00554.2011
  52. Hu GX, Lian QQ, Lin H, Latif SA, Morris DJ, Hardy MP, et al. Rapid mechanisms of glucocorticoid signaling in the Leydig cell. Steroids 2008;73:1018-24. https://doi.org/10.1016/j.steroids.2007.12.020
  53. Akibami MA, Mann DR. Mechanism of stress-induced attenuation of the testicular response to gonadotropin: possible involvement of testicular opioids, a pertussis toxin-sensitive G-protein, and phosphodiesterase. J Androl 1996;17:10-6.
  54. Kostic T, Andric S, Kovacevic R, Maric D. The effect of opioid antagonists in local regulation of testicular response to acute stress in adult rats. Steroids 1997;62:703-8. https://doi.org/10.1016/S0039-128X(97)00071-8
  55. Messager S, Chatzidaki EE, Ma D, Hendrick AG, Zahn D, Dixon J, et al. Kisspeptin directly stimulates gonadotropin-releasing hormone release via G protein-coupled receptor 54. Proc Natl Acad Sci U S A 2005;102:1761-6. https://doi.org/10.1073/pnas.0409330102
  56. Yeo SH, Herbison AE. Projections of arcuate nucleus and rostral periventricular kisspeptin neurons in the adult female mouse brain. Endocrinology 2011;152:2387-99. https://doi.org/10.1210/en.2011-0164
  57. Han SK, Gottsch ML, Lee KJ, Popa SM, Smith JT, Jakawich SK, et al. Activation of gonadotropin-releasing hormone neurons by kisspeptin as a neuroendocrine switch for the onset of puberty. J Neurosci 2005;25:11349-56. https://doi.org/10.1523/JNEUROSCI.3328-05.2005
  58. Liu X, Lee K, Herbison AE. Kisspeptin excites gonadotropin-releasing hormone neurons through a phospholipase C/calciumdependent pathway regulating multiple ion channels. Endocrinology 2008;149:4605-14. https://doi.org/10.1210/en.2008-0321
  59. Kinoshita M, Tsukamura H, Adachi S, Matsui H, Uenoyama Y, Iwata K, et al. Involvement of central metastin in the regulation of preovulatory luteinizing hormone surge and estrous cyclicity in female rats. Endocrinology 2005;146:4431-6. https://doi.org/10.1210/en.2005-0195
  60. Shahab M, Mastronardi C, Seminara SB, Crowley WF, Ojeda SR, Plant TM. Increased hypothalamic GPR54 signaling: a potential mechanism for initiation of puberty in primates. Proc Natl Acad Sci U S A 2005;102:2129-34. https://doi.org/10.1073/pnas.0409822102
  61. Mikkelsen JD, Simonneaux V. The neuroanatomy of the kisspeptin system in the mammalian brain. Peptides 2009;30:26-33. https://doi.org/10.1016/j.peptides.2008.09.004
  62. Canteras NS, Simerly RB, Swanson LW. Organization of projections from the ventromedial nucleus of the hypothalamus: a Phaseolus vulgaris-leucoagglutinin study in the rat. J Comp Neurol 1994; 348:41-79. https://doi.org/10.1002/cne.903480103
  63. Herbison AE. Estrogen positive feedback to gonadotropin-releasing hormone (GnRH) neurons in the rodent: the case for the rostral periventricular area of the third ventricle (RP3V). Brain Res Rev 2008;57:277-87. https://doi.org/10.1016/j.brainresrev.2007.05.006
  64. Ducret E, Gaidamaka G, Herbison AE. Electrical and morphological characteristics of anteroventral periventricular nucleus kisspeptin and other neurons in the female mouse. Endocrinology 2010;151:2223-32. https://doi.org/10.1210/en.2009-1480
  65. Yamada S, Uenoyama Y, Kinoshita M, Iwata K, Takase K, Matsui H, et al. Inhibition of metastin (kisspeptin-54)-GPR54 signaling in the arcuate nucleus-median eminence region during lactation in rats. Endocrinology 2007;148:2226-32. https://doi.org/10.1210/en.2006-1529

피인용 문헌

  1. Expression and significance of netrin-1 and its receptor UNC5C in precocious puberty female rat hypothalamus vol.8, pp.3, 2015, https://doi.org/10.1016/s1995-7645(14)60322-9
  2. Effects of Neuroendocrine CB1 Activity on Adult Leydig Cells vol.7, pp.None, 2013, https://doi.org/10.3389/fendo.2016.00047
  3. Anandamide acts via kisspeptin in the regulation of testicular activity of the frog, Pelophylax esculentus vol.420, pp.None, 2013, https://doi.org/10.1016/j.mce.2015.11.011
  4. Bisphenol A Induces Oxidative Stress in Bone Marrow Cells, Lymphocytes, and Reproductive Organs of Holtzman Rats vol.36, pp.2, 2017, https://doi.org/10.1177/1091581817691224
  5. The Modulating Role of Sex and Anabolic-Androgenic Steroid Hormones in Cannabinoid Sensitivity vol.12, pp.None, 2013, https://doi.org/10.3389/fnbeh.2018.00249
  6. Impact of Dietary Fats on Brain Functions vol.16, pp.7, 2018, https://doi.org/10.2174/1570159x15666171017102547